Here we study the deformation theory of some maps f: X → ℙr , r = 1, 2, where X is a nodal curve and f|T is not constant for every irreducible component T of X. For r = 1 we show that the “stratification by gonality” for any subset of [...] with fixed topological type behaves like the stratification by gonality of M g.
@article{bwmeta1.element.doi-10_2478_s11533-008-0063-3, author = {Edoardo Ballico}, title = {Gonality for stable curves and their maps with a smooth curve as their target}, journal = {Open Mathematics}, volume = {7}, year = {2009}, pages = {54-58}, zbl = {1174.14029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0063-3} }
Edoardo Ballico. Gonality for stable curves and their maps with a smooth curve as their target. Open Mathematics, Tome 7 (2009) pp. 54-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0063-3/
[1] Bayer D., Eisenbud D., Graph curves, Adv. Math., 1991, 86, 1–40 http://dx.doi.org/10.1016/0001-8708(91)90034-5[Crossref]
[2] Buchweitz R.-O., Greuel G.-M., The Milnor number and deformations of complex curve singularities, Invent. Math., 1980, 58, 241–281 http://dx.doi.org/10.1007/BF01390254[Crossref] | Zbl 0458.32014
[3] Caporaso L., A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc., 1994, 7, 589–660 http://dx.doi.org/10.2307/2152786[Crossref] | Zbl 0827.14014
[4] Caporaso L., Brill-Noether theory of binary curves, preprint available at arXiv:math/0807.1484
[5] Ciliberto C., Harris J., Miranda R., On the surjectivity of the Wahl map, Duke Math. J., 1988, 57, 829–858 http://dx.doi.org/10.1215/S0012-7094-88-05737-7[Crossref] | Zbl 0684.14009
[6] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math., 1982, 67, 23–86 http://dx.doi.org/10.1007/BF01393371[Crossref] | Zbl 0506.14016
[7] Sernesi E., Deformations of algebraic schemes, Springer, Berlin, 2006 | Zbl 1102.14001
[8] Seshadri C., Fibrés vectoriels sur les courbes algébriques, Astérisque 96, Société Mathématique de France, Paris, 1982 | Zbl 0517.14008
[9] Tannenbaum A., Families of algebraic curves with nodes, Compositio Math., 1980, 41, 107–119 | Zbl 0399.14018