On the Ricci operator of locally homogeneous Lorentzian 3-manifolds
Giovanni Calvaruso ; Oldrich Kowalski
Open Mathematics, Tome 7 (2009), p. 124-139 / Harvested from The Polish Digital Mathematics Library

We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269102
@article{bwmeta1.element.doi-10_2478_s11533-008-0061-5,
     author = {Giovanni Calvaruso and Oldrich Kowalski},
     title = {On the Ricci operator of locally homogeneous Lorentzian 3-manifolds},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {124-139},
     zbl = {1180.53070},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0061-5}
}
Giovanni Calvaruso; Oldrich Kowalski. On the Ricci operator of locally homogeneous Lorentzian 3-manifolds. Open Mathematics, Tome 7 (2009) pp. 124-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0061-5/

[1] Bueken P., Three-dimensional Lorentzian manifolds with constant principal Ricci curvatures π1 = π2 ≠ π3, J. Math. Phys., 1997, 38, 1000–1013 http://dx.doi.org/10.1063/1.531880[Crossref] | Zbl 0876.53042

[2] Bueken P., On curvature homogeneous three-dimensional Lorentzian manifolds, J. Geom. Phys., 1997, 22, 349–362 http://dx.doi.org/10.1016/S0393-0440(96)00037-X[Crossref] | Zbl 0881.53055

[3] Bueken P., Djoric M., Three-dimensional Lorentz metrics and curvature homogeneity of order one, Ann. Glob. Anal. Geom., 2000, 18, 85–103 http://dx.doi.org/10.1023/A:1006612120550[Crossref] | Zbl 0947.53037

[4] Calvaruso G., Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 2007, 57, 1279–1291. Addendum: J. Geom. Phys., 2008, 58, 291–292 http://dx.doi.org/10.1016/j.geomphys.2006.10.005[Crossref] | Zbl 1112.53051

[5] Calvaruso G., Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata, 2007, 127, 99–119 http://dx.doi.org/10.1007/s10711-007-9163-7[Crossref] | Zbl 1126.53044

[6] Calvaruso G., Pseudo-Riemannian 3-manifolds with prescribed distinct constant Ricci eigenvalues, Diff. Geom. Appl., 2008, 26, 419–433 http://dx.doi.org/10.1016/j.difgeo.2007.11.031[Crossref] | Zbl 1153.53053

[7] Calvaruso G., Three-dimensional homogeneous Lorentzian metrics with prescribed Ricci tensor, preprint | Zbl 1153.81329

[8] Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen., 2005, 38, 841–850 http://dx.doi.org/10.1088/0305-4470/38/4/005[Crossref] | Zbl 1068.53049

[9] Cordero L.A., Parker P.E., Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Mat., Serie VII, 1997, 17, 129–155 | Zbl 0948.53027

[10] Kowalski O., Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Nagoya Math. J., 1993, 132, 1–36 | Zbl 0789.53024

[11] Kowalski O., Nikčević S.Ž., On Ricci eigenvalues of locally homogeneous Riemannian 3-manifolds, Geom. Dedicata, 1996, 62, 65–72 http://dx.doi.org/10.1007/BF00240002[Crossref] | Zbl 0859.53034

[12] Kowalski O., Prüfer F., On Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Math. Ann., 1994, 300, 17–28 http://dx.doi.org/10.1007/BF01450473[Crossref] | Zbl 0813.53020

[13] Milnor J., Curvature of left invariant metrics on Lie groups, Adv. Math., 1976, 21, 293–329 http://dx.doi.org/10.1016/S0001-8708(76)80002-3[Crossref] | Zbl 0341.53030

[14] O’Neill B., Semi-Riemannian Geometry, Academic Press, New York, 1983

[15] Nomizu K., Left-invariant Lorentz metrics on Lie groups, Osaka J. Math., 1979, 16, 143–150 | Zbl 0397.53047

[16] Rahmani S., Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois, J. Geom. Phys., 1992, 9, 295–302 (in French) http://dx.doi.org/10.1016/0393-0440(92)90033-W[Crossref]