Halphen pencils on weighted Fano threefold hypersurfaces
Ivan Cheltsov ; Jihun Park
Open Mathematics, Tome 7 (2009), p. 1-45 / Harvested from The Polish Digital Mathematics Library

On a general quasismooth well-formed weighted hypersurface of degree Σi=14 a i in ℙ(1, a 1, a 2, a 3, a 4), we classify all pencils whose general members are surfaces of Kodaira dimension zero.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269719
@article{bwmeta1.element.doi-10_2478_s11533-008-0056-2,
     author = {Ivan Cheltsov and Jihun Park},
     title = {Halphen pencils on weighted Fano threefold hypersurfaces},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {1-45},
     zbl = {1183.14022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0056-2}
}
Ivan Cheltsov; Jihun Park. Halphen pencils on weighted Fano threefold hypersurfaces. Open Mathematics, Tome 7 (2009) pp. 1-45. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0056-2/

[1] Cheltsov I., Elliptic structures on weighted three-dimensional Fano hypersurfaces, Izv. Ross. Akad. Nauk Ser. Mat., 2007, 71, 765–862 (in Russian) | Zbl 1135.14031

[2] Cheltsov I., Park J., Weighted Fano threefold hypersurfaces, J. Reine Angew. Math., 2006, 600, 81–116 | Zbl 1113.14030

[3] Cheltsov I., Park J., Halphen Pencils on weighted Fano threefold hypersurfaces (extended version), preprint available at arXiv:math/0607776 [WoS] | Zbl 1183.14022

[4] Corti A., Singularities of linear systems and 3-fold birational geometry, London Math. Soc. Lecture Note Ser., 2000, 281, 259–312 | Zbl 0960.14017

[5] Corti A., Pukhlikov A., Reid M., Fano 3-fold hypersurfaces, London Math. Soc. Lecture Note Ser., 2000, 281, 175–258 | Zbl 0960.14020

[6] Dolgachev I.V., Rational surfaces with a pencil of elliptic curves, Izv. Akad. Nauk SSSR Ser. Mat., 1966, 30, 1073–1100 (in Russian)

[7] Kawamata Y., Divisorial contractions to 3-dimensional terminal quotient singularities, Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, 241–246

[8] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Advanced Studies in Pure Mathematics, 1987, 10, 283–360 | Zbl 0672.14006

[9] Ryder D., Classification of elliptic and K3 fibrations birational to some ℚ-Fano 3-folds, J. Math. Sci. Univ. Tokyo, 2006, 13, 13–42 | Zbl 1139.14013

[10] Ryder D., The Curve Exclusion Theorem for elliptic and K3 fibrations birational to Fano 3-fold hypersurfaces, preprint available at arXiv:math.AG/0606177 [WoS] | Zbl 1162.14008

[11] Shokurov V.V., Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat., 1993, 40, 95–202 http://dx.doi.org/10.1070/IM1993v040n01ABEH001862[Crossref]