Asymptotic expressions for remainder terms of the mid-point, trapezoid and Simpson’s rules are given. Corresponding formulas with finite sums are also given.
@article{bwmeta1.element.doi-10_2478_s11533-008-0050-8, author = {Nenad Ujevi\'c and Nata\v sa Bili\'c}, title = {Asymptotic expressions for remainder terms of some quadrature rules}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {559-567}, zbl = {1155.41009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0050-8} }
Nenad Ujević; Nataša Bilić. Asymptotic expressions for remainder terms of some quadrature rules. Open Mathematics, Tome 6 (2008) pp. 559-567. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0050-8/
[1] Cerone P., Dragomir S.S., Trapezoidal-type rules from an inequalities point of view, In: Handbook of analyticcomputational methods in applied mathematics, Anastassiou G. (Ed.), CRC Press, New York, 2000, 65–134 | Zbl 0966.26014
[2] Cerone P., Dragomir S.S., Midpoint-type rules from an inequalities point of view, In: Handbook of analyticcomputational methods in applied mathematics, Anastassiou G. (Ed.), CRC Press, New York, 2000, 135–200 | Zbl 0966.26015
[3] Cerone P., Three points rules in numerical integration, Nonlinear Anal., 2001, 47, 2341–2352 http://dx.doi.org/10.1016/S0362-546X(01)00358-3 | Zbl 1042.65521
[4] Dragomir S.S., Agarwal R.P., Cerone P., On Simpson’s inequality and applications, J. Inequal. Appl., 2000, 5, 533–579 http://dx.doi.org/10.1155/S102558340000031X | Zbl 0976.26012
[5] Dragomir S.S., Cerone P., Roumeliotis J., A new generalization of Ostrowski’s integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 2000, 13, 19–25 http://dx.doi.org/10.1016/S0893-9659(99)00139-1 | Zbl 0946.26013
[6] Dragomir S.S., Pečarić J., Wang S., The unified treatment of trapezoid, Simpson and Ostrowski type inequalities for monotonic mappings and applications, Math. Comput. Modelling, 2000, 31, 61–70 http://dx.doi.org/10.1016/S0895-7177(00)00046-7 | Zbl 1042.26507
[7] Dragomir S.S., Rassias Th.M., Ostrowski type inequalities and applications in numerical integration, Kluwer Academic, 2002
[8] Krommer A.R., Ueberhuber C.W., Computational integration, SIAM, Philadelphia, 1998 | Zbl 0903.65019
[9] Pearce C.E.M., Pečarić J., Ujevic N., Varosanec S., Generalizations of some inequalities of Ostrowski-Gross type, Math. Inequal. Appl., 2000, 3, 25–34 | Zbl 0978.26011
[10] Ujevic N., On perturbed mid-point and trapezoid inequalities and applications, Kyungpook Math. J., 2003, 43, 327–334 | Zbl 1034.26023
[11] Ujevic N., A generalization of Ostrowski’s inequality and applications in numerical integration, Appl. Math. Lett., 2004, 17, 133–137 http://dx.doi.org/10.1016/S0893-9659(04)90023-7 | Zbl 1057.26023
[12] Ujevic N., Roberts A.J., A corrected quadrature formula and applications, ANZIAM J., 2003, 45, 41–56 | Zbl 1076.41017
[13] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge, 1996