Our aim in this paper is mainly to prove some existence results for solutions of generalized variational-like inequalities with (η,h)-pseudo-monotone type III operators defined on non-compact sets in topological vector spaces.
@article{bwmeta1.element.doi-10_2478_s11533-008-0049-1, author = {Mohammad Chowdhury and Kok-Keong Tan}, title = {Generalized variational-like inequalities for pseudo-monotone type III operators}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {526-536}, zbl = {1151.49011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0049-1} }
Mohammad Chowdhury; Kok-Keong Tan. Generalized variational-like inequalities for pseudo-monotone type III operators. Open Mathematics, Tome 6 (2008) pp. 526-536. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0049-1/
[1] Aliprantis C., Brown D., Equilibria in markets with a Riesz space of commodities, J. Math. Econom., 1983, 11, 189–207 http://dx.doi.org/10.1016/0304-4068(83)90036-8 | Zbl 0502.90006
[2] Aubin J.P., Ekeland I., Applied nonlinear analysis, John Wiley & Sons, Inc., New York, 1984 | Zbl 0641.47066
[3] Brézis H., Nirenberg L., Stampacchia G., A remark on Ky Fan’s minimax principle, Boll. Un. Mat. Ital., 1972, 6, 293–300 | Zbl 0264.49013
[4] Browder F.E., Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc., 1965, 71, 780–785 http://dx.doi.org/10.1090/S0002-9904-1965-11391-X | Zbl 0138.39902
[5] Chowdhury M.S.R., Generalized variational inequalities for upper hemicontinuous and demi operators with applications to fixed point theorems in Hilbert spaces, Serdica Math. J., 1998, 24, 163–178 | Zbl 0941.47054
[6] Chowdhury M.S.R., The surjectivity of upper-hemi-continuous and pseudo-monotone type II operators in reflexive Banach Spaces, Ganit, 2000, 20, 45–53 | Zbl 1063.47503
[7] Chowdhury M.S.R., Haque A.L., Thompson H.B., Quasem G.M.A., The surjectivity of pseudo-monotone type III operators in reflexive Banach Spaces, Nonlinear Funct. Anal. Appl., 2004, 9, 37–44 | Zbl 1069.47507
[8] Chowdhury M.S.R., Tan K.-K., Generalization of Ky Fan’s minimax inequality with applications to generalized variational inequalities for pseudo-monotone operators and fixed point theorems, J. Math. Anal. Appl., 1996, 204, 910–929 http://dx.doi.org/10.1006/jmaa.1996.0476
[9] Chowdhury M.S.R., Tan K.-K., Generalized variational inequalities for quasi-monotone operators and applications, Bull. Polish Acad. Sci. Math., 1997, 45, 25–54 | Zbl 0885.47018
[10] Chowdhury M.S.R., Tarafdar E., Hemi-continuous operators and some applications, Acta Math. Hungar., 1999, 83, 251–261 http://dx.doi.org/10.1023/A:1006725207966 | Zbl 0934.47038
[11] Chowdhury M.S.R., Thompson H.B., Generalized variational-like inequalities for pseudomonotone type II operators, Nonlinear Analysis, 2005, 63, 321–330 http://dx.doi.org/10.1016/j.na.2005.01.060 | Zbl 1159.49300
[12] Ding X.P., Lee C., Yu S.-J., Algorithm of solutions for a system of generalized mixed implicit quasi-variational inclusions involving (h-η)-maximal monotone mappings, Taiwanese J. Math., 2007, 11, 577–593 | Zbl 1138.49011
[13] Ding X.P., Tarafdar E., Generalized nonlinear variational inequalities with nonmonotone set-valued mappings, Appl. Math. Lett., 1994, 7, 5–11 http://dx.doi.org/10.1016/0893-9659(94)90002-7 | Zbl 0808.49013
[14] Ding X.P., Tarafdar E., Existence and uniqueness of solutions for a general nonlinear variational inequality, Appl. Math. Lett., 1995, 8, 31–36 http://dx.doi.org/10.1016/0893-9659(94)00106-M
[15] Ding X.P., Tarafdar E., Monotone generalized variational inequalities and generalized complementarity problems, J. Optim. Theory Appl., 1996, 88, 107–122 http://dx.doi.org/10.1007/BF02192024 | Zbl 0843.49004
[16] Ding X.P., Tarafdar E., Generalized variational-like inequalities with pseudomonotone set-valued mappings, Arch. Math. (Basel), 2000, 74, 302–313 | Zbl 1013.47026
[17] Fan K., A minimax inequality and applications, In: Shisha O. (Ed.), Inequalities III, Proc. Third Sympos. (1969 University of California, Los Angeles), Academic Press, New York, 1972, 103–113
[18] Fang S.C., Peterson E.L., Generalized variational inequalities, J. Optim. Theory Appl., 1982, 38, 363–383 http://dx.doi.org/10.1007/BF00935344 | Zbl 0471.49007
[19] Harker P.T., Pang J.S., Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Programming, 1990, 48, 161–220 http://dx.doi.org/10.1007/BF01582255 | Zbl 0734.90098
[20] Hartman P., Stampacchia G., On some non-linear elliptic differential-functional equations, Acta Math., 1966, 115, 271–310 http://dx.doi.org/10.1007/BF02392210 | Zbl 0142.38102
[21] Jou C.R., Yao J.C., Extension of generalized multi-valued variational inequalities, Appl. Math. Lett., 1993, 6, 21–25 http://dx.doi.org/10.1016/0893-9659(93)90026-J
[22] Karamardian S., The complementarity problem, Math. Programming, 1972, 2, 107–129 http://dx.doi.org/10.1007/BF01584538 | Zbl 0247.90058
[23] Kinderlehrer D., Stampacchia G., An introduction to variational inequalities and their applications, Academic Press, New York-London, 1980 | Zbl 0457.35001
[24] Kneser H., Sur un théorème fondamental de la théorie des jeux, C. R. Acad. Sci. Paris, 1952, 234, 2418–2420 (in French) | Zbl 0046.12201
[25] Mancino O., Stampacchia G., Convex programming and variational inequalities, J. Optimization Theory Appl., 1972, 9, 3–23 http://dx.doi.org/10.1007/BF00932801 | Zbl 0213.45202
[26] Minty G.J., Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 1962, 29, 341–346 http://dx.doi.org/10.1215/S0012-7094-62-02933-2 | Zbl 0111.31202
[27] Minty G.J., On a “monotonicity” method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A., 1963,50, 1038–1041 http://dx.doi.org/10.1073/pnas.50.6.1038 | Zbl 0124.07303
[28] Moreau J.J., Principes extrémaux pour le problème de la naissance de la cavitation, J. Mécanique, 1966, 5, 439–470 (in French) | Zbl 0147.44504
[29] Noor M.A., General variational inequalities, Appl. Math. Lett., 1988, 1, 119–122 http://dx.doi.org/10.1016/0893-9659(88)90054-7
[30] Noor M.A., Nonconvex functions and variational inequalities, J. Optim. Theory Appl., 1995, 87, 615–630 http://dx.doi.org/10.1007/BF02192137 | Zbl 0840.90107
[31] Parida J., Sahoo M., Kumar A., A variational-like inequality problem, Bull. Austral. Math. Soc., 1989, 39, 225–231 http://dx.doi.org/10.1017/S0004972700002690 | Zbl 0649.49007
[32] Pascali D., Sburlan S., Nonlinear mappings of monotone type, Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978 | Zbl 0423.47021
[33] Peng J.M., Equivalence of variational inequality problems to unconstrained optimization, Math. Programming, 1997, 78, 347–355 | Zbl 0887.90171
[34] Rockafellar R.T., Convex analysis, Princeton University Press, Princeton, N.J., 1970 | Zbl 0193.18401
[35] Rockafellar R.T., Wets R.J.-B., Variational analysis, Springer-Verlag, Springer-Verlag, Berlin, 1998 | Zbl 0888.49001
[36] Stefanov S.M., A Lagrangian dual method for solving variational inequalities, Math. Inequal. Appl., 2002, 5, 597–608 | Zbl 1015.49007
[37] Yamashita N., Taji K., Fukushima M., Unconstrained optimization reformulations of variational inequality problems, J. Optim. Theory Appl., 1997, 92, 439–456 http://dx.doi.org/10.1023/A:1022660704427 | Zbl 0879.90180
[38] Zhou J.X., Chen G., Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities, J. Math. Anal. Appl., 1988, 132, 213–225 http://dx.doi.org/10.1016/0022-247X(88)90054-6