Disjoint triangles and quadrilaterals in a graph
Hong Wang
Open Mathematics, Tome 6 (2008), p. 543-558 / Harvested from The Polish Digital Mathematics Library

Let n, s and t be three integers with s ≥ 1, t ≥ 0 and n = 3s + 4t. Let G be a graph of order n such that the minimum degree of G is at least (n + s)/2. Then G contains a 2-factor with s + t components such that s of them are triangles and t of them are quadrilaterals.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269292
@article{bwmeta1.element.doi-10_2478_s11533-008-0048-2,
     author = {Hong Wang},
     title = {Disjoint triangles and quadrilaterals in a graph},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {543-558},
     zbl = {1152.05049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0048-2}
}
Hong Wang. Disjoint triangles and quadrilaterals in a graph. Open Mathematics, Tome 6 (2008) pp. 543-558. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0048-2/

[1] Bollobás B., Extremal graph theory, Academic Press, London-New York, 1978 | Zbl 0419.05031

[2] Corrádi K., Hajnal A., On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar., 1963, 14, 423–439 http://dx.doi.org/10.1007/BF01895727 | Zbl 0118.19001

[3] El-Zahar M.H., On circuits in graphs, Discrete Math., 1984, 50, 227–230 http://dx.doi.org/10.1016/0012-365X(84)90050-5

[4] Enomoto H., On the existence of disjoint cycles in a graph, Combinatorica, 1998, 18, 487–492 http://dx.doi.org/10.1007/s004930050034 | Zbl 0924.05041

[5] Erdős P., Some recent combinatroial problems, Technical Report, University of Bielefeld, November 1990

[6] Randerath B., Schiermeyer I., Wang H., On quadrilaterals in a graph, Discrete Math., 1999, 203, 229–237. http://dx.doi.org/10.1016/S0012-365X(99)00053-9 | Zbl 0932.05046

[7] Wang H., On the maximum number of independent cycles in a graph, Discrete Math., 1990, 205, 183–190 http://dx.doi.org/10.1016/S0012-365X(99)00009-6 | Zbl 0936.05063

[8] Wang H., Vertex-disjoint quadrilaterals in graphs, Discrete Math., 2004, 288, 149–166 http://dx.doi.org/10.1016/j.disc.2004.02.020 | Zbl 1102.05051

[9] Wnag H., Proof of the Erdős-Faudree Conjecture on Quadrilaterals, preprint | Zbl 1223.05145