Some results on multi-valued weakly jungck mappings in b-metric space
Memudu Olatinwo
Open Mathematics, Tome 6 (2008), p. 610-621 / Harvested from The Polish Digital Mathematics Library

In this paper, the concept of multi-valued weak contraction of Berinde and Berinde [8] for the Picard iteration in a complete metric space is extended to the case of multi-valued weak contraction for the Jungck iteration in a complete b-metric space. While our main results generalize the recent results of Berinde and Berinde [8], they also extend, improve and unify several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Our results also improve the recent results of Daffer and Kaneko [16].

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269398
@article{bwmeta1.element.doi-10_2478_s11533-008-0047-3,
     author = {Memudu Olatinwo},
     title = {Some results on multi-valued weakly jungck mappings in b-metric space},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {610-621},
     zbl = {1175.47055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0047-3}
}
Memudu Olatinwo. Some results on multi-valued weakly jungck mappings in b-metric space. Open Mathematics, Tome 6 (2008) pp. 610-621. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0047-3/

[1] Agarwal R.P., Meehan M., O’Regan D., Fixed point theory and applications, Cambridge University Press, Cambridge, 2001

[2] Banach S., Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 1922, 3, 133–181 (in French) | Zbl 48.0201.01

[3] Berinde V., A priori and a posteriori error estimates for a class of ϕ-contractions, Bulletins for Applied & Computing Math., 1999, 183–192

[4] Berinde V., Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002

[5] Berinde V., On the approximation of fixed points of weak ϕ-contractive operators, Fixed Point Theory, 2003, 4, 131–142 | Zbl 1065.47069

[6] Berinde V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 2003, 19, 7–22 | Zbl 1114.47045

[7] Berinde V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 2004, 9, 43–53 | Zbl 1078.47042

[8] Berinde M., Berinde V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 2007, 326, 772–782 http://dx.doi.org/10.1016/j.jmaa.2006.03.016 | Zbl 1117.47039

[9] Boyd D.W., Wong J.S.W., On nonlinear contractions, Proc. Amer. Math. Soc., 1969, 20, 458–464 http://dx.doi.org/10.2307/2035677 | Zbl 0175.44903

[10] Browder F., Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 1965, 54, 1041–1044 http://dx.doi.org/10.1073/pnas.54.4.1041 | Zbl 0128.35801

[11] Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1993, 1, 5–11 | Zbl 0849.54036

[12] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 1998, 46, 263–276 | Zbl 0920.47050

[13] Ciric L.B., Fixed point theory, contraction mapping principle, FME Press, Beograd, 2003

[14] Ciric L.B., Ume J.S., Common fixed point theorems for multi-valued non-self mappings, Publ. Math. Debrecen, 2002, 60, 359–371 | Zbl 1017.54011

[15] Ciric L.B., Ume J.S., On the convergence of Ishikawa iterates to a common fixed point of multi-valued mappings, Demonstratio Math., 2003, 36, 951–956 | Zbl 1073.47061

[16] Daffer P.Z., Kaneko H., Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl., 1995, 192, 655–666 http://dx.doi.org/10.1006/jmaa.1995.1194 | Zbl 0835.54028

[17] Geraghty M.A., On contractive mappings, Proc. Amer. Math. Soc., 1973, 40, 604–608 http://dx.doi.org/10.2307/2039421 | Zbl 0245.54027

[18] Goffman C., Pedrick G., First course in functional analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1965 | Zbl 0122.11206

[19] Itoh S., Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae, 1977, 18, 247–258 | Zbl 0359.54038

[20] Joshi M.C., Bose R.K., Some topics in nonlinear functional analysis, John Wiley & Sons, Inc., New York, 1985 | Zbl 0596.47038

[21] Kaneko H., A general principle for fixed points of contractive multivalued mappings, Math. Japon., 1986, 31, 407–411 | Zbl 0602.54048

[22] Kaneko H., Generalized contractive multivalued mappings and their fixed points, Math. Japon., 1988, 33, 57–64 | Zbl 0647.54038

[23] Khamsi M.A., Kirk W.A., An introduction to metric spaces and fixed point theory, Wiley-Interscience, New York, 2001 | Zbl 1318.47001

[24] Kubiaczyk I., Ali N.M., On the convergence of the Ishikawa iterates to a common fixed point for a pair of multi-valued mappings, Acta Math. Hungar., 1997, 75, 253–257 http://dx.doi.org/10.1023/A:1006555406715 | Zbl 0892.47057

[25] Lim T.C., On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 1985, 110, 436–441 http://dx.doi.org/10.1016/0022-247X(85)90306-3

[26] Markins J.T., A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc., 1968, 74, 639–640 http://dx.doi.org/10.1090/S0002-9904-1968-11971-8 | Zbl 0159.19903

[27] Mizoguchi M., Takahashi W., Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl., 1989, 141, 177–188 http://dx.doi.org/10.1016/0022-247X(89)90214-X

[28] Nadler S.B., Multi-valued contraction mappings, Pacific J. Math., 1969, 30, 475–488 | Zbl 0187.45002

[29] Olatinwo M.O., A generalization of some results on multi-valued weakly Picard mappings in b-metric space, preprint | Zbl 1177.54028

[30] Picard E., Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J.Math. Pures et Appl., 1890, 6, 145–210 (in French) | Zbl 22.0357.02

[31] Rhoades B.E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 1977, 226, 257–290 http://dx.doi.org/10.2307/1997954 | Zbl 0365.54023

[32] Rhoades B.E., A fixed point theorem for a multivalued non-self mapping, Comment. Math. Univ. Carolin., 1996, 37, 401–404 | Zbl 0849.47032

[33] Rhoades B.E., Watson B., Fixed points for set-valued mappings on metric spaces, Math. Japon., 1990, 35, 735–743 | Zbl 0728.54013

[34] Rus I.A., Fixed point theorems for multi-valued mappings in complete metric spaces, Math. Japon., 1975, 20, 21–24

[35] Rus I.A., Generalized contractions and applications, Cluj University Press, Cluj Napoca, 2001

[36] Rus I.A., Petrusel A., Petrusel G., Fixed point theory: 1950-2000, Romanian Contributions, House of the Book of Science, Cluj Napoca, 2002

[37] Singh S.L., Bhatnagar C., Hashim A.M., Round-off stability of Picard iterative procedure for multivalued operators, Nonlinear Anal. Forum, 2005, 10, 13–19 | Zbl 1095.47508

[38] Zeidler E., Nonlinear functional analysis and its applications-fixed point theorems, Springer-Verlag, New York, Inc., 1986 | Zbl 0583.47050