Let K be a CW-complex of dimension 3 such that H 3(K;ℤ) = 0 and the orbit space of the 3-sphere with respect to the action of the quaternion group Q 8 determined by the inclusion Q 8 ⊆ . Given a point a ∈ , we show that there is no map f:K → which is strongly surjective, i.e., such that MR[f,a]=min(g −1(a))|g ∈ [f] ≠ 0.
@article{bwmeta1.element.doi-10_2478_s11533-008-0042-8, author = {Claudemir Aniz}, title = {Strong surjectivity of mappings of some 3-complexes into \[ M\_{Q\_8 } \] }, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {497-503}, zbl = {1153.55002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0042-8} }
Claudemir Aniz. Strong surjectivity of mappings of some 3-complexes into \[ M_{Q_8 } \] . Open Mathematics, Tome 6 (2008) pp. 497-503. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0042-8/
[1] Aniz C., Strong surjectivity of mapping of some 3-complexes into 3-manifolds, Fund. Math., 2006, 192, 195–214 http://dx.doi.org/10.4064/fm192-3-1 | Zbl 1111.55001
[2] Brooks R., Coincidences, root sand fixed points, Ph.D. thesis, University of California, Los Angeles, 1967
[3] Brooks R., On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy, Pacific J. Math., 1972, 40, 45–52 | Zbl 0235.55006
[4] Brooks R., On the sharpness of the Δ2 and Δ1 Nielsen numbers, J. Reine Angew. Math., 1973, 259, 101–108
[5] Cartan H., Eilenberg S., Homological Algebra, Princeton University Press, 1956
[6] Hermida J.A., Sánchez-Giralda T., Linear equations over commutative rings and determinantal ideals, J. Algebra, 1986, 99, 72–79 http://dx.doi.org/10.1016/0021-8693(86)90054-2 | Zbl 0588.13002
[7] Kiang T.H., The theory of fixed point classes, Springer-Verlag, Berlin, Science Press, Beijing, 1989 | Zbl 0676.55001
[8] Kovacs I., Silver D.S., Williams S.G., Determinants of commuting-block matrices, Amer. Math. Monthly, 1999, 106, 950–952. http://dx.doi.org/10.2307/2589750 | Zbl 0981.15005
[9] Swan R.G., Periodic resolutions for finite groups, Ann. of Math., 1960, 72, 267–291 http://dx.doi.org/10.2307/1970135 | Zbl 0096.01701