A note on strong pseudoconvexity
Vsevolod Ivanov
Open Mathematics, Tome 6 (2008), p. 576-580 / Harvested from The Polish Digital Mathematics Library

A strongly pseudoconvex function is generalized to non-smooth settings. A complete characterization of the strongly pseudoconvex radially lower semicontinuous functions is obtained.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269547
@article{bwmeta1.element.doi-10_2478_s11533-008-0041-9,
     author = {Vsevolod Ivanov},
     title = {A note on strong pseudoconvexity},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {576-580},
     zbl = {1162.26306},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0041-9}
}
Vsevolod Ivanov. A note on strong pseudoconvexity. Open Mathematics, Tome 6 (2008) pp. 576-580. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0041-9/

[1] Diewert W.E., Alternative characterizations of six kinds of quasiconvexity in the nondifferentiable case with applications to nonsmooth programming, In: Schaible S., Ziemba W.T. (Eds.), Generalized concavity in optimization and economics, Academic Press, New York, 1981, 51–95 | Zbl 0539.90088

[2] Diewert W.E., Avriel M., Zang I., Nine kinds of quasiconcavity and concavity, J. Econom. Theory, 1981, 25, 397–420 http://dx.doi.org/10.1016/0022-0531(81)90039-9 | Zbl 0483.26007

[3] Hadjisavvas N., Schaible S., On strong pseudomonotonicity and (semi)strict quasimonotonicity, J. Optim. Theory Appl., 1993, 79, 139–155 http://dx.doi.org/10.1007/BF00941891 | Zbl 0792.90068

[4] Hadjisavvas N., Schaible S., On strong pseudomonotonicity and (semi)strict quasimonotonicity, J. Optim. Theory Appl., 1995, 85,741–742 http://dx.doi.org/10.1007/BF02193065 | Zbl 0833.90104

[5] Ivanov V.I., First order characterizations of pseudoconvex functions, Serdica Math. J., 2001, 27, 203–218 | Zbl 0982.26009

[6] Karamardian S., Complementarity problems over cones with monotone and pseudomonotone maps., J. Optim. Theory Appl., 1976, 18, 445–454 http://dx.doi.org/10.1007/BF00932654 | Zbl 0304.49026

[7] Karamardian S., Schaible S., Seven kinds of monotone maps, J. Optim. Theory Appl., 1990, 66, 37–46 http://dx.doi.org/10.1007/BF00940531 | Zbl 0679.90055

[8] Komlósi S., Generalized monotonicity in nonsmooth analysis, In: Komlósi S., Rapcsák T., Schaible S. (Eds.), Generalized convexity, Springer Verlag, Heidelberg, 1994, 263–275 | Zbl 0811.49013

[9] Mishra M.S., Nanda S., Acharya D., Strong pseudo-convexity and symmetric duality in nonlinear programming, J. Aust. Math. Soc. Ser. B, 1985, 27, 238–244 http://dx.doi.org/10.1017/S0334270000004884 | Zbl 0584.90087

[10] Ponstein J., Seven kinds of convexity, SIAM Review, 1967, 9, 115–119 http://dx.doi.org/10.1137/1009007 | Zbl 0164.06501

[11] Weir T., On strong pseudoconvexity in nonlinear programming duality, Opsearch, 1990, 27, 117–121 | Zbl 0713.90058

[12] Yang Y., On strong pseudoconvexity and strong pseudomonotonicity, Numer. Math. J. Chinese Univ., 2000, 22, 141–146 | Zbl 0955.46010