Cyclic cohomology of certain nuclear Fréchet algebras and DF algebras
Zinaida Lykova
Open Mathematics, Tome 6 (2008), p. 405-421 / Harvested from The Polish Digital Mathematics Library

We give explicit formulae for the continuous Hochschild and cyclic homology and cohomology of certain ^ -algebras. We use well-developed homological techniques together with some niceties of the theory of locally convex spaces to generalize the results known in the case of Banach algebras and their inverse limits to wider classes of topological algebras. To this end we show that, for a continuous morphism ϕ: x → y of complexes of complete nuclear DF-spaces, the isomorphism of cohomology groups H n(ϕ): H n(x) → H n (y) is automatically topological. The continuous cyclic-type homology and cohomology are described up to topological isomorphism for the following classes of biprojective ^ -algebras: the tensor algebra E ^ F generated by the duality (E,F,<·,·>) for nuclear Fréchet spaces E and F or for nuclear DF-spaces E and F; nuclear biprojective Köthe algebras λ(P) which are Fréchet spaces or DF-spaces; the algebra of distributions ε*(G) on a compact Lie group G.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269245
@article{bwmeta1.element.doi-10_2478_s11533-008-0040-x,
     author = {Zinaida Lykova},
     title = {Cyclic cohomology of certain nuclear Fr\'echet algebras and DF algebras},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {405-421},
     zbl = {1154.19003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0040-x}
}
Zinaida Lykova. Cyclic cohomology of certain nuclear Fréchet algebras and DF algebras. Open Mathematics, Tome 6 (2008) pp. 405-421. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0040-x/

[1] Brodzki J., Lykova Z.A., Excision in cyclic type homology of Fréchet algebras, Bull. London Math. Soc., 2001, 33, 283–291 http://dx.doi.org/10.1017/S0024609301007998 | Zbl 1032.46094

[2] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994

[3] Cuntz J., Cyclic theory and the bivariant Chern-Connes character, In: Noncommutative geometry, Lecture Notes in Math., Springer, Berlin, 2004, 1831, 73–135 | Zbl 1053.46047

[4] Cuntz J., Quillen D., Operators on noncommutative differential forms and cyclic homology, In: Geometry, topology and physics, Conf. Proc. Lecture Notes Geom. Topology VI, Int. Press, Cambridge, MA, 1995, 77–111 | Zbl 0865.18009

[5] Grothendieck A., Sur les espaces (F) et (DF), Summa Brasil. Math., 1954, 3, 57–123 (in French)

[6] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 1955, 16

[7] Helemskii A.Ya., The homology of Banach and topological algebras, Kluwer Academic Publishers Group, Dordrecht, 1989

[8] Helemskii A.Ya., Banach cyclic (co)homology and the Connes-Tzygan exact sequence, J. London Math. Soc., 1992, 46, 449–462 http://dx.doi.org/10.1112/jlms/s2-46.3.449 | Zbl 0816.46076

[9] Helemskii A.Ya., Banach and polynormed algebras. General theory, representations, homology, Oxford University Press, Oxford, 1992

[10] Husain T., The open mapping and closed graph theorems in topological vector spaces, Friedr. Vieweg and Sohn, Braunschweig, 1965 | Zbl 0124.06301

[11] Jarchow H., Locally convex spaces, B.G. Teubner, Stuttgart, 1981

[12] Johnson B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 1972, 127 | Zbl 0256.18014

[13] Kassel C., Cyclic homology, comodules, and mixed complexes, J. Algebra, 1987, 107, 195–216 http://dx.doi.org/10.1016/0021-8693(87)90086-X

[14] Khalkhali M., Algebraic connections, universal bimodules and entire cyclic cohomology, Comm. Math. Phys., 1994, 161, 433–446 http://dx.doi.org/10.1007/BF02101928 | Zbl 0792.46034

[15] Köthe G., Topological vector spaces I, Die Grundlehren der mathematischen Wissenschaften, 159, Springer-Verlag New York Inc., New York, 1969

[16] Loday J.-L., Cyclic Homology, Springer Verlag, Berlin, 1992

[17] Lykova Z.A., Cyclic cohomology of projective limits of topological algebras, Proc. Edinburgh Math. Soc., 2006, 49, 173–199 http://dx.doi.org/10.1017/S0013091504000410 | Zbl 1105.46051

[18] Lykova Z.A., Cyclic-type cohomology of strict inductive limits of Fréchet algebras, J. Pure Appl. Algebra, 2006, 205, 471–497 http://dx.doi.org/10.1016/j.jpaa.2005.07.014 | Zbl 1105.46050

[19] Lykova Z.A., White M.C., Excision in the cohomology of Banach algebras with coefficients in dual bimodules, In: Albrecht E., Mathieu M. (Eds.), Banach Algebras’97, Walter de Gruyter Publishers, Berlin, 1998, 341–361 | Zbl 0922.46062

[20] Meise R., Vogt D., Introduction to Functional Analysis, Clarendon Press, Oxford, 1997 | Zbl 0924.46002

[21] Meyer R., Comparisons between periodic, analytic and local cyclic cohomology, preprint available at http://arxiv.org/abs/math/0205276 v2

[22] Pietsch A., Nuclear Locally Convex Spaces, Springer Verlag, Berlin, 1972

[23] Pirkovskii A.Yu., Biprojective topological algebras of homological bidimension 1, J. Math. Sci., 2001, 111, 3476–3495 http://dx.doi.org/10.1023/A:1016058211668

[24] Pirkovskii A.Yu., Homological bidimension of biprojective topological algebras and nuclearity, Acta Univ. Oulu. Ser Rerum Natur., 2004, 408, 179–196 | Zbl 1074.46030

[25] Pták V., On complete topological linear spaces, Czech. Math. J., 1953, 78, 301–364 (in Russian) | Zbl 0057.09303

[26] Puschnigg M., Excision in cyclic homology theories, Invent. Math., 2001, 143, 249–323 http://dx.doi.org/10.1007/s002220000105 | Zbl 0973.19002

[27] Robertson A.P., Robertson W., Topological vector spaces, Cambridge Univ. Press, 1973

[28] Selivanov Yu.V., Biprojective Banach algebras, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 15, 387–399 | Zbl 0447.46042

[29] Selivanov Yu.V., Cohomology of biflat Banach algebras with coefficients in dual bimodules, Functional Anal. Appl., 1995, 29, 289–291 http://dx.doi.org/10.1007/BF01077480 | Zbl 0881.46036

[30] Selivanov Yu.V., Biprojective topological algebras, preprint | Zbl 1025.46018

[31] Taylor J.L., A general framework for a multi-operator functional calculus, Adv. Math., 1972, 9, 183–252 http://dx.doi.org/10.1016/0001-8708(72)90017-5

[32] Treves F., Topological vector spaces distributions and kernels, Academic Press, New York, London, 1967 | Zbl 0171.10402

[33] Wodzicki M., Vanishing of cyclic homology of stable C*-algebras, C. R. Acad. Sci. Paris I, 1988, 307, 329–334 | Zbl 0652.46052