On a theorem of Tate
Fedor Bogomolov ; Yuri Tschinkel
Open Mathematics, Tome 6 (2008), p. 343-350 / Harvested from The Polish Digital Mathematics Library

We study applications of divisibility properties of recurrence sequences to Tate’s theory of abelian varieties over finite fields.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269397
@article{bwmeta1.element.doi-10_2478_s11533-008-0037-5,
     author = {Fedor Bogomolov and Yuri Tschinkel},
     title = {On a theorem of Tate},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {343-350},
     zbl = {1151.14018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0037-5}
}
Fedor Bogomolov; Yuri Tschinkel. On a theorem of Tate. Open Mathematics, Tome 6 (2008) pp. 343-350. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0037-5/

[1] Bogomolov F., Korotiaev M., Tschinkel Y., A Torelli theorem for curves over finite fields, preprint available at http://arxiv.org/abs/0802.3708 | Zbl 1193.14036

[2] Corvaja P., Zannier U., Finiteness of integral values for the ratio of two linear recurrences, Invent. Math., 2002, 149, 431–451 http://dx.doi.org/10.1007/s002220200221 | Zbl 1026.11021

[3] Deligne P., La conjecture de Weil I, Inst. Hautes Études Sci. Publ. Math., 1974, 43, 273–307 http://dx.doi.org/10.1007/BF02684373

[4] Honda T., Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan, 1968, 20, 83–95 http://dx.doi.org/10.2969/jmsj/02010083 | Zbl 0203.53302

[5] Magagna C., A lower bound for the r-order of a matrix modulo N, Monatsh. Math., 2008, 153, 59–81 http://dx.doi.org/10.1007/s00605-007-0484-2 | Zbl 1156.11013

[6] Tate J., Endomorphisms of abelian varieties over finite fields, Invent. Math., 1966, 2, 134–144 http://dx.doi.org/10.1007/BF01404549 | Zbl 0147.20303

[7] Tate J., Classes d’isogénie des variétés abéliennes sur un corps fini, In: Séminaire Bourbaki, Vol. 1968/69, Exposés 347–363, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1971, 179, 95–110 http://dx.doi.org/10.1007/BFb0058807

[8] Zarhin Y.G., Abelian varieties, l-adic representations and Lie algebras. Rank independence on l, Invent. Math., 1979, 55, 165–176 http://dx.doi.org/10.1007/BF01390088 | Zbl 0406.14026