We consider a convex optimization problem with a vector valued function as objective function and convex cone inequality constraints. We suppose that each entry of the objective function is the composition of some convex functions. Our aim is to provide necessary and sufficient conditions for the weakly efficient solutions of this vector problem. Moreover, a multiobjective dual treatment is given and weak and strong duality assertions are proved.
@article{bwmeta1.element.doi-10_2478_s11533-008-0036-6, author = {Radu Bo\c t and Ioan Hodrea and Gert Wanka}, title = {Optimality conditions for weak efficiency to vector optimization problems with composed convex functions}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {453-468}, zbl = {1176.90526}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0036-6} }
Radu Boţ; Ioan Hodrea; Gert Wanka. Optimality conditions for weak efficiency to vector optimization problems with composed convex functions. Open Mathematics, Tome 6 (2008) pp. 453-468. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0036-6/
[1] Adán M., Novo V., Weak efficiency in vector optimization using a closure of algebraic type under cone-convexlikeness, European J. Oper. Res, 2003, 149, 641–653 http://dx.doi.org/10.1016/S0377-2217(02)00444-7 | Zbl 1033.90113
[2] Arana-Jiménez M., Rufián-Lizana A., Osuna-Gómez R., Weak efficiency for multiobjective variational problems, European J. Oper. Res., 2004, 155, 373–379 http://dx.doi.org/10.1016/S0377-2217(02)00882-2 | Zbl 1045.90054
[3] Boţ R.I., Grad S.-M., Wanka G., A new constraint qualification and conjugate duality for composed convex optimization problems, J. Optim. Theory Appl., 2007, 135, 241–255 http://dx.doi.org/10.1007/s10957-007-9247-4 | Zbl 1146.90494
[4] Boţ R.I., Hodrea I.B., Wanka G., Farkas-type results for inequality systems with composed convex functions via conjugate duality, J. Math. Anal. Appl., 2006, 322, 316–328 http://dx.doi.org/10.1016/j.jmaa.2005.09.007 | Zbl 1104.90054
[5] Boţ R.I., Kassay G., Wanka G., Strong duality for generalized convex optimization problems, J. Optim. Theory Appl., 2005, 127, 45–70 http://dx.doi.org/10.1007/s10957-005-6392-5 | Zbl 1158.90420
[6] Boţ R.I., Wanka G., A new duality approach for multiobjective convex optimization problems, J. Nonlinear Convex Anal., 2003, 3, 41–57 | Zbl 1007.90056
[7] Boţ R.I., Wanka G., An analysis of some dual problems in multiobjective optimization (I), Optimization, 2004, 53, 281–300 http://dx.doi.org/10.1080/02331930410001715514 | Zbl 1144.90474
[8] Boţ R.I., Wanka G., An analysis of some dual problems in multiobjective optimization (II), Optimization, 2004, 53, 301–324 http://dx.doi.org/10.1080/02331930410001715523 | Zbl 1144.90474
[9] Boţ R.I., Wanka G., Farkas-type results with conjugate functions, SIAM J. Optim., 2005, 15, 540–554 http://dx.doi.org/10.1137/030602332 | Zbl 1114.90147
[10] Combari C., Laghdir M., Thibault L., Sous-différentiels de fonctions convexes composées, Ann. Sci. Math. Québec, 1994, 18, 119–148 (in French)
[11] Hiriart-Urruty J.-B., Martínez-Legaz J.-E., New formulas for the Legendre-Fenchel transform, J. Math. Anal. Appl., 2003, 288, 544–555 http://dx.doi.org/10.1016/j.jmaa.2003.09.012 | Zbl 1052.49020
[12] Jahn J., Mathematical vector optimization in partially ordered linear spaces, Peter Lang Verlag, Frankfurt am Main, 1986 | Zbl 0578.90048
[13] Jeyakumar V., Composite nonsmooth programming with Gâteaux differentiability, SIAM J. Optim., 1991, 1, 30–41 http://dx.doi.org/10.1137/0801004 | Zbl 0752.90067
[14] Jeyakumar V., Lee G.M., Dinh N., Characterizations of solution sets of convex vector minimization problems, European J. Oper. Res., 2006, 174, 1396–1413 http://dx.doi.org/10.1016/j.ejor.2005.05.007 | Zbl 1103.90090
[15] Jeyakumar V., Yang X.Q., Convex composite minimization with C 1,1 functions, J. Optim. Theory Appl., 1993, 86, 631–648 http://dx.doi.org/10.1007/BF02192162 | Zbl 0838.90110
[16] Kutateladže S.S., Changes of variables in the Young transformation, Soviet Math. Dokl., 1977, 18, 1039–1041 | Zbl 0383.49011
[17] Lemaire B., Application of a subdifferential of a convex composite functional to optimal control in variational inequalities, Lecture Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, 1985, 255, 103–117 | Zbl 0579.49020
[18] Levin V.L., Sur le Sous-Différentiel de Fonctions Composeé, Doklady Akademia Nauk, 1970, 194, 28–29 (in French)
[19] Lin Y., Wang X., Necessary and sufficient conditions of optimality for some classical scheduling problems, European J. Oper. Res., 2007, 176, 809–818 http://dx.doi.org/10.1016/j.ejor.2005.09.017 | Zbl 1103.90043
[20] Rockafellar R.T., Convex analysis, Princeton University Press, Princeton, 1970 | Zbl 0193.18401
[21] Wanka G., Boţ R.I., Vargyas E., Duality for location problems with unbounded unit balls, European J. Oper. Res., 2007, 179, 1252–1265 http://dx.doi.org/10.1016/j.ejor.2005.09.048 | Zbl 1127.90047
[22] Yang X.Q., Jeyakumar V., First and second-order optimality conditions for convex composite multiobjective optimization, J. Optim. Theory Appl., 1997, 95, 209–224 http://dx.doi.org/10.1023/A:1022695714596 | Zbl 0890.90162