Periodic subgroups of projective linear groups in positive characteristic
Alla Detinko ; Dane Flannery
Open Mathematics, Tome 6 (2008), p. 384-392 / Harvested from The Polish Digital Mathematics Library

We classify the maximal irreducible periodic subgroups of PGL(q, 𝔽 ), where 𝔽 is a field of positive characteristic p transcendental over its prime subfield, q = p is prime, and 𝔽 × has an element of order q. That is, we construct a list of irreducible subgroups G of GL(q, 𝔽 ) containing the centre 𝔽 ×1q of GL(q, 𝔽 ), such that G/𝔽 ×1q is a maximal periodic subgroup of PGL(q, 𝔽 ), and if H is another group of this kind then H is GL(q, 𝔽 )-conjugate to a group in the list. We give criteria for determining when two listed groups are conjugate, and show that a maximal irreducible periodic subgroup of PGL(q, 𝔽 ) is self-normalising.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269275
@article{bwmeta1.element.doi-10_2478_s11533-008-0033-9,
     author = {Alla Detinko and Dane Flannery},
     title = {Periodic subgroups of projective linear groups in positive characteristic},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {384-392},
     zbl = {1159.20026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0033-9}
}
Alla Detinko; Dane Flannery. Periodic subgroups of projective linear groups in positive characteristic. Open Mathematics, Tome 6 (2008) pp. 384-392. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0033-9/

[1] Bácskai Z., Finite irreducible monomial groups of small prime degree, Ph.D. thesis, Australian National University, 1999 | Zbl 0986.20048

[2] Detinko A.S., Maximal periodic subgroups of classical groups over fields of positive characteristic I, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat., 1993, 4, 35–39 (in Russian)

[3] Detinko A.S., Maximal periodic subgroups of classical groups over fields of positive characteristic II, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat., 1994, 2, 49–52 (in Russian)

[4] Detinko A.S., On deciding finiteness for matrix groups over fields of positive characteristic, LMS J. Comput. Math., 2001, 4, 64–72 | Zbl 1053.20041

[5] Dixon J.D., Zalesskii A.E., Finite primitive linear groups of prime degree, J. London Math. Soc., 1998, 57, 126–134 http://dx.doi.org/10.1112/S0024610798005778 | Zbl 0954.20012

[6] Dixon J.D., Zalesskii A.E., Finite imprimitive linear groups of prime degree, J. Algebra, 2004, 276, 340–370 http://dx.doi.org/10.1016/j.jalgebra.2004.02.005 | Zbl 1062.20051

[7] Flannery D.L., Detinko A.S., Locally nilpotent linear groups, Irish Math. Soc. Bull., 2005, 56, 37–51 | Zbl 1126.20032

[8] Isaacs I.M., Character theory of finite groups, Dover Publications, Inc., New York, 1994 | Zbl 0849.20004

[9] Konyukh V.S., Metabelian subgroups of the general linear group over an arbitrary field, Dokl. Akad. Nauk BSSR, 1978, 22, 389–392 (in Russian)

[10] Konyukh V.S., Sylow p-subgroups of a projective linear group, Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat., 1985, 6, 23–29 (in Russian) | Zbl 0644.20028

[11] Mazurova V.N., Maximal periodic subgroups of a symplectic group, Dokl. Akad. Nauk BSSR, 1985, 29, 403–406 (in Russian) | Zbl 0571.20041

[12] Mazurova V.N., Periodic subgroups of classical groups over fields of positive characteristic, Dokl. Akad. Nauk BSSR, 1985, 29, 493–496 (in Russian) | Zbl 0571.20042

[13] Suprunenko D.A., Matrix groups, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1976, 45

[14] Wehrfritz B.A.F., Infinite linear groups, Springer-Verlag, Berlin, Heidelberg, New York, 1973 | Zbl 0261.20038

[15] Winter D.J., Representations of locally finite groups, Bull. Amer. Math. Soc., 1968, 74, 145–148 http://dx.doi.org/10.1090/S0002-9904-1968-11913-5 | Zbl 0159.31304

[16] Zalesskii A.E., Maximal periodic subgroups of the full linear group over a field with positive characteristic, Vesci Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk, 1966, 2, 121–123 (in Russian)

[17] Zalesskii A.E., Mazurova V.N., Maximal periodic subgroups of the orthogonal group, Institute of Mathematics AN BSSR, 1985, 9, 218 (in Russian)