We consider the full Navier-Stokes-Fourier system of equations on an unbounded domain with prescribed nonvanishing boundary conditions for the density and temperature at infinity. The topic of this article continues author’s previous works on existence of the Navier-Stokes-Fourier system on nonsmooth domains. The procedure deeply relies on the techniques developed by Feireisl and others in the series of works on compressible, viscous and heat conducting fluids.
@article{bwmeta1.element.doi-10_2478_s11533-008-0032-x, author = {Luk\'a\v s Poul}, title = {On dynamics of fluids in meteorology}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {422-438}, zbl = {1143.76054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0032-x} }
Lukáš Poul. On dynamics of fluids in meteorology. Open Mathematics, Tome 6 (2008) pp. 422-438. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0032-x/
[1] Bogovskii M.E., Solutions of some problems of vector analysis associated with the operators div and grad, Trudy Sem. S. L. Soboleva, Akad. Nauk SSSR Sibirsk. Otdel., Novosibirsk, 1980, 149, 5–40 (in Russian)
[2] Ducomet B., Feireisl E., On the dynamics of gaseous stars, Arch. Ration. Mech. Anal., 2004, 174, 221–266 http://dx.doi.org/10.1007/s00205-004-0326-5 | Zbl 1085.76061
[3] Feireisl E., Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, 26 | Zbl 1080.76001
[4] Feireisl E., Mathematical theory of compressible viscous and heat conducting fluids, Comput. Math. Appl., 2007, 53, 461–490 http://dx.doi.org/10.1016/j.camwa.2006.02.042 | Zbl 1122.76075
[5] Feireisl E., Novotný A., On a simple model of reacting compressible flows arising in astrophysics, Proc. Roy. Soc. Edinburgh Sect. A, 2005, 135, 1169–1194 http://dx.doi.org/10.1017/S0308210500004327 | Zbl 1130.35108
[6] Feireisl E., Novotný A., Singular limits in thermodynamics of viscous fluids, Springer, to appear | Zbl 1176.35126
[7] Feireisl E., Novotný A., Petzeltová H., On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid, Math. Methods Appl. Sci., 2002, 25, 1045–1073 http://dx.doi.org/10.1002/mma.327 | Zbl 0996.35051
[8] Feireisl E., Petzeltová H., Trivisa K., Multicomponent reactive flows: Global-in-time existence for large data, preprint | Zbl 1323.76091
[9] Leray J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 1934, 63, 193–248 http://dx.doi.org/10.1007/BF02547354
[10] Lions P.-L., Mathematical topics in fluid dynamics, Compressible models, Oxford Lecture Series in Mathematics and its Applications, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998, 10
[11] Murat F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1978, 5, 489–507 Lukáš Poul | Zbl 0399.46022
[12] Novotný A., Straškraba I., Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004, 27 | Zbl 1088.35051
[13] Poul L., Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains, Discrete Contin. Dyn. Syst., 2007
[14] Poul L., On the Oxenius-like model of fluid flow in the unbounded domain case, to appear in WDS’07 Proceedings of Contributed Papers: Part I - Mathematics and Computer Sciences (eds. J. Safrankova and J. Pavlu Prague, Matfyzpress 2007
[15] Poul L., On Dynamics of fluids in astrophysics, preprint | Zbl 1239.76025
[16] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, Princeton University Press, Princeton, 1970, 30 | Zbl 0207.13501
[17] Tartar L., Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Res. Notes in Math., Pitman, Boston, Mass.-London, 1979, 39, 136–212