In this paper, we establish several explicit evaluations, reciprocity theorems and integral representations for a continued fraction of order twelve which are analogues to Rogers-Ramanujan’s continued fraction and Ramanujan’s cubic continued fraction.
@article{bwmeta1.element.doi-10_2478_s11533-008-0031-y, author = {M. Mahadeva Naika and B. Dharmendra and K. Shivashankara}, title = {A continued fraction of order twelve}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {393-404}, zbl = {1176.33020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0031-y} }
M. Mahadeva Naika; B. Dharmendra; K. Shivashankara. A continued fraction of order twelve. Open Mathematics, Tome 6 (2008) pp. 393-404. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0031-y/
[1] Adiga C., Berndt B.C., Bhargava S., Watson G.N., Chapter 16 of Ramanujan’s second notebook: theta-function and q-series, Mem. Amer. Math. Soc., 1985, 53, no. 315 | Zbl 0565.33002
[2] Berndt B.C., Ramanujan’s notebooks Part III, Springer-Verlag, New York, 1991 | Zbl 0733.11001
[3] Chan H.H., Ramanujan’s elliptic functions to alternative bases and approximations to π, Number Theory for the Millennium I, Proceedings of the Millennial Number Theory Conference (May 2000 Champaign-Urbana USA), 2002, 197–213
[4] Jacobsen L., Domains of validity for some of Ramanujan’s continued fraction formulas, J. Math. Anal. Appl., 1989, 143, 412–437 http://dx.doi.org/10.1016/0022-247X(89)90049-8
[5] Ramanujan S., Notebooks, Tata Institute of Fundamental Research, Bombay, 1957