A note on tilting sequences
Clezio Braga ; Flávio Coelho
Open Mathematics, Tome 6 (2008), p. 364-371 / Harvested from The Polish Digital Mathematics Library

We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269057
@article{bwmeta1.element.doi-10_2478_s11533-008-0029-5,
     author = {Clezio Braga and Fl\'avio Coelho},
     title = {A note on tilting sequences},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {364-371},
     zbl = {1161.16007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0029-5}
}
Clezio Braga; Flávio Coelho. A note on tilting sequences. Open Mathematics, Tome 6 (2008) pp. 364-371. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0029-5/

[1] Angeleri-Hügel L., Coelho F.U., Infinitely generated tilting modules of finite projective dimension, Forum Math., 2001, 13, 239–250 http://dx.doi.org/10.1515/form.2001.006

[2] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006 | Zbl 1092.16001

[3] Auslander M., Platzeck M.I., Reiten I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 1979, 250, 1–46 http://dx.doi.org/10.2307/1998978 | Zbl 0421.16016

[4] Auslander M., Reiten I., Smalø S., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995 | Zbl 0834.16001

[5] Bazzoni S., Stovícek J., All tilting modules are of finite type, Proc. Amer. Math. Soc., to appear | Zbl 1132.16008

[6] Braga C., Coelho F.U., Limits of tilting modules, preprint | Zbl 1228.16009

[7] Brenner S., Butler M.C.R., Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Proc. Second Internat. Conf. Carleton Univ. (1979 Ottawa Canada), Lecture Notes in Math. 832, Springer, Berlin-New York, 1980, 103–169 | Zbl 0446.16031

[8] Buan A., Solberg O., Limits of pure-injective cotilting modules, Algebr. Represent. Theory, 2005, 8, 621–634 http://dx.doi.org/10.1007/s10468-005-0341-8 | Zbl 1099.16003

[9] Eklof P., Trlifaj J., How to make Ext vanish, Bull. London Math. Soc., 2001, 33, 41–51 http://dx.doi.org/10.1112/blms/33.1.41 | Zbl 1030.16004

[10] Happel D., Ringel C.M., Tilted algebras, Trans. Amer. Math. Soc., 1982, 274, 399–443 http://dx.doi.org/10.2307/1999116 | Zbl 0503.16024

[11] Liu S., Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math., 1993, 61, 12–19 http://dx.doi.org/10.1007/BF01258050 | Zbl 0809.16015

[12] Skowroński A., Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math., 1993, 30, 515–527 | Zbl 0818.16017

[13] Skowroński A., Minimal representation-infinite Artin algebras, Math. Proc. Cambridge Philos. Soc., 1994, 116, 229–243 http://dx.doi.org/10.1017/S0305004100072546 | Zbl 0822.16010