We prove estimates for the sectional curvature of hyperkähler quotients and give applications to moduli spaces of solutions to Nahm’s equations and Hitchin’s equations.
@article{bwmeta1.element.doi-10_2478_s11533-008-0026-8, author = {Roger Bielawski}, title = {Curvature of hyperk\"ahler quotients}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {191-203}, zbl = {1161.53030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0026-8} }
Roger Bielawski. Curvature of hyperkähler quotients. Open Mathematics, Tome 6 (2008) pp. 191-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0026-8/
[1] Aubin T., Nonlinear analysis on manifolds. Monge-Ampère equations, Springer Verlag, New York, 1982 | Zbl 0512.53044
[2] Besse A.L., Einstein manifolds, Springer Verlag, Berlin, 1987 | Zbl 0613.53001
[3] Donaldson S.K., Nahm’s equations and the classification of monopoles, Comm. Math. Phys., 1984, 96, 387–407 http://dx.doi.org/10.1007/BF01214583 | Zbl 0603.58042
[4] Donaldson S.K., Boundary value problems for Yang-Mills fields, J. Geom. Phys., 1992, 8, 89–122 http://dx.doi.org/10.1016/0393-0440(92)90044-2
[5] Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 1987, 55, 59–126 http://dx.doi.org/10.1112/plms/s3-55.1.59 | Zbl 0634.53045
[6] Hurtubise J.C., The classification of monopoles for the classical groups, Comm. Math. Phys., 1989, 120, 613–641 http://dx.doi.org/10.1007/BF01260389 | Zbl 0824.58015
[7] Jost J., Peng X.-W., Group actions gauge transformations and the calculus of variations, Math. Ann., 1992, 293, 595–621 http://dx.doi.org/10.1007/BF01444737 | Zbl 0772.53011
[8] Lang S., Fundamentals of differential geometry, Springer Verlag, New York, 1999 | Zbl 0932.53001
[9] Nahm W., The construction of all self-dual multimonopoles by the ADHM method, in: Monopoles in quantum field theory, World Sci. Publishing, Singapore, 1982, 87–94
[10] Swartz C., Continuity and hypocontinuity for bilinear maps, Math. Z., 1984, 186, 321–329 http://dx.doi.org/10.1007/BF01174886 | Zbl 0545.46004