Curvature of hyperkähler quotients
Roger Bielawski
Open Mathematics, Tome 6 (2008), p. 191-203 / Harvested from The Polish Digital Mathematics Library

We prove estimates for the sectional curvature of hyperkähler quotients and give applications to moduli spaces of solutions to Nahm’s equations and Hitchin’s equations.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269557
@article{bwmeta1.element.doi-10_2478_s11533-008-0026-8,
     author = {Roger Bielawski},
     title = {Curvature of hyperk\"ahler quotients},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {191-203},
     zbl = {1161.53030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0026-8}
}
Roger Bielawski. Curvature of hyperkähler quotients. Open Mathematics, Tome 6 (2008) pp. 191-203. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0026-8/

[1] Aubin T., Nonlinear analysis on manifolds. Monge-Ampère equations, Springer Verlag, New York, 1982 | Zbl 0512.53044

[2] Besse A.L., Einstein manifolds, Springer Verlag, Berlin, 1987 | Zbl 0613.53001

[3] Donaldson S.K., Nahm’s equations and the classification of monopoles, Comm. Math. Phys., 1984, 96, 387–407 http://dx.doi.org/10.1007/BF01214583 | Zbl 0603.58042

[4] Donaldson S.K., Boundary value problems for Yang-Mills fields, J. Geom. Phys., 1992, 8, 89–122 http://dx.doi.org/10.1016/0393-0440(92)90044-2

[5] Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 1987, 55, 59–126 http://dx.doi.org/10.1112/plms/s3-55.1.59 | Zbl 0634.53045

[6] Hurtubise J.C., The classification of monopoles for the classical groups, Comm. Math. Phys., 1989, 120, 613–641 http://dx.doi.org/10.1007/BF01260389 | Zbl 0824.58015

[7] Jost J., Peng X.-W., Group actions gauge transformations and the calculus of variations, Math. Ann., 1992, 293, 595–621 http://dx.doi.org/10.1007/BF01444737 | Zbl 0772.53011

[8] Lang S., Fundamentals of differential geometry, Springer Verlag, New York, 1999 | Zbl 0932.53001

[9] Nahm W., The construction of all self-dual multimonopoles by the ADHM method, in: Monopoles in quantum field theory, World Sci. Publishing, Singapore, 1982, 87–94

[10] Swartz C., Continuity and hypocontinuity for bilinear maps, Math. Z., 1984, 186, 321–329 http://dx.doi.org/10.1007/BF01174886 | Zbl 0545.46004