We characterize metric spaces whose hyperspaces of non-empty closed, bounded, compact or finite subsets, endowed with the Attouch-Wets topology, are absolute (neighborhood) retracts.
@article{bwmeta1.element.doi-10_2478_s11533-008-0022-z, author = {Rostyslav Voytsitskyy}, title = {The ANR-property of hyperspaces with the Attouch-Wets topology}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {228-236}, zbl = {1144.54007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0022-z} }
Rostyslav Voytsitskyy. The ANR-property of hyperspaces with the Attouch-Wets topology. Open Mathematics, Tome 6 (2008) pp. 228-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0022-z/
[1] Banakh T., Kurihara M., Sakai K., Hyperspaces of normed linear spaces with the Attouch-Wets topology, Set-Valued Anal., 2003, 11, 21–36 http://dx.doi.org/10.1023/A:1021981321137 | Zbl 1050.54009
[2] Banakh T., Voytsitskyy R., Characterizing metric spaces whose hyperspaces are absolute neighborhood retracts, Topology Appl., 2007, 154, 2009–2025 http://dx.doi.org/10.1016/j.topol.2006.02.009 | Zbl 1125.54006
[3] Beer G., Topologies on closed and closed convex sets, MIA 268, Kluwer Academic Publishers Group, Dordrecht, 1993 | Zbl 0792.54008
[4] Curtis D., Hyperspaces of noncompact metric spaces, Compositio Math., 1980, 40, 139–152 | Zbl 0431.54004
[5] Curtis D., To Nhu N., Hyperspaces of finite subsets which are homeomorphic to ℵ0-dimensional linear metric spaces, Topol. Appl., 1985, 19, 251–260 http://dx.doi.org/10.1016/0166-8641(85)90005-7
[6] Sakai K., Yaguchi M., Hyperspaces of Banach spaces with the Attouch-Wets topology, Set-Valued Anal., 2004, 12, 329–344 http://dx.doi.org/10.1023/B:SVAN.0000031354.48064.0b | Zbl 1056.54015
[7] Voytsitskyy R., Hyperspaces with the Attouch-Wets topology homeomorphic to ℓ2, http://arxiv.org/abs/0803.2098 | Zbl 1164.54009