On the ideal (v 0)
Piotr Kalemba ; Szymon Plewik ; Anna Wojciechowska
Open Mathematics, Tome 6 (2008), p. 218-227 / Harvested from The Polish Digital Mathematics Library

The σ-ideal (v 0) is associated with the Silver forcing, see [5]. Also, it constitutes the family of all completely doughnut null sets, see [9]. We introduce segment topologies to state some resemblances of (v 0) to the family of Ramsey null sets. To describe add(v 0) we adopt a proof of Base Matrix Lemma. Consistent results are stated, too. Halbeisen’s conjecture cov(v 0) = add(v 0) is confirmed under the hypothesis t = min{cf(c), r}. The hypothesis cov(v 0) = ω 1 implies that (v 0) has the ideal type (c, ω 1, c).

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269328
@article{bwmeta1.element.doi-10_2478_s11533-008-0021-0,
     author = {Piotr Kalemba and Szymon Plewik and Anna Wojciechowska},
     title = {On the ideal (v 0)},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {218-227},
     zbl = {1151.03027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0021-0}
}
Piotr Kalemba; Szymon Plewik; Anna Wojciechowska. On the ideal (v 0). Open Mathematics, Tome 6 (2008) pp. 218-227. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0021-0/

[1] Aniszczyk B., Remarks on σ-algebra of (s)-measurable sets, Bull. Polish Acad. Sci. Math., 1987, 35, 561–563 | Zbl 0648.28001

[2] Balcar B., Pelant J., Simon P., The space of ultrafilters on N covered by nowhere dense sets, Fund. Math., 1980, 110, 11–24 | Zbl 0568.54004

[3] Balcar B., Simon P., Disjoint refinement, In: Monk D., Bonnet R. (Eds.), Handbook of Boolean algebras, North-Holland, Amsterdam, 1989, 333–388

[4] Blass A., Combinatorial cardinal characteristics of the continuum, In: Foreman M., Magidor M., Kanamori A. (Eds.), Handbook of Set Theory, to appear | Zbl 1198.03058

[5] Brendle J., Strolling through paradise, Fund. Math., 1995, 148, 1–25 | Zbl 0835.03010

[6] Brendle J., Halbeisen L., Löwe B., Silver measurability and its relation to other regularity properties, Math. Proc. Cambridge Philos. Soc., 2005, 138, 135–149 http://dx.doi.org/10.1017/S0305004104008187 | Zbl 1071.03036

[7] Di Prisco C., Henle J., Doughnuts floating ordinals square brackets and ultraflitters, J. Symbolic Logic, 2000, 65, 461–473 http://dx.doi.org/10.2307/2586548 | Zbl 0948.03041

[8] Engelking R., General topology, Mathematical Monographs, Polish Scientific Publishers, Warsaw, 1977

[9] Halbeisen L., Making doughnuts of Cohen reals, MLQ Math. Log. Q., 2003, 49, 173–178 http://dx.doi.org/10.1002/malq.200310016 | Zbl 1016.03054

[10] Hausdorff F., Summen von ℵ1 Mengen, Fund. Math., 1936, 26, 243–247

[11] Ismail M., Plewik Sz., Szymanski A., On subspaces of exp(N), Rend. Circ. Mat. Palermo, 2000, 49, 397–414 http://dx.doi.org/10.1007/BF02904253 | Zbl 1012.54012

[12] Kechris A., Classical descriptive set theory, Graduate Texts in Mathematics 156, Springer-Verlag, New York, 1995

[13] Kysiak M., Nowik A., Weiss T., Special subsets of the reals and tree forcing notions, Proc. Amer. Math. Soc., 2007, 135, 2975–2982 http://dx.doi.org/10.1090/S0002-9939-07-08808-9 | Zbl 1121.03056

[14] Louveau A., Une méthode topologique pour l’étude de la propriété de Ramsey, Israel J. Math., 1976, 23, 97–116 http://dx.doi.org/10.1007/BF02756789 | Zbl 0333.54022

[15] Louveau A., Simpson S., A separable image theorem for Ramsey mappings, Bull. Acad. Polon. Sci. Sér. Sci. Math., 1982, 30, 105–108 | Zbl 0498.04006

[16] Machura M., Cardinal invariants p, t and h and real functions, Tatra Mt. Math. Publ., 2004, 28, 97–108

[17] Moran G., Strauss D., Countable partitions of product spaces, Mathematika, 1980, 27, 213–224 http://dx.doi.org/10.1112/S002557930001010X | Zbl 0459.04001

[18] Morgan J.C., Point set theory, Marcel Dekker, New York, 1990

[19] Nowik A., Reardon P., A dichotomy theorem for the Ellentuck topology, Real Anal. Exchange, 2003/04, 29, 531–542 | Zbl 1065.03029

[20] Pawlikowski J., Parametrized Ellentuck theorem, Topology Appl., 1990, 37, 65–73 http://dx.doi.org/10.1016/0166-8641(90)90015-T

[21] Plewik Sz., Ideals of nowhere Ramsey sets are isomorphic, J. Symbolic Logic, 1994, 59, 662–667 http://dx.doi.org/10.2307/2275415 | Zbl 0809.04007

[22] Plewik Sz., Voigt B., Partitions of reals: measurable approach, J. Combin. Theory Ser. A, 1991, 58, 136–140 http://dx.doi.org/10.1016/0097-3165(91)90079-V

[23] Rothberger F., On some problems of Hausdorff and of Sierpiński, Fund. Math., 1948, 35, 29–46 | Zbl 0032.33702

[24] Schilling K., Some category bases which are equivalent to topologies, Real Anal. Exchange, 1988/89, 14, 210–214

[25] Szpilrajn(Marczewski) E., Sur une classe de fonctions de M. Sierpiński et la classe correspondante d’ensambles, Fund. Math., 1935, 24, 17–34 | Zbl 61.0229.01