Unbounded solutions of the max-type difference equation xn+1=maxAnXn,BnXn-2
Christopher Kerbert ; Michael Radin
Open Mathematics, Tome 6 (2008), p. 307-324 / Harvested from The Polish Digital Mathematics Library

We investigate the boundedness nature of positive solutions of the difference equation xn+1=maxAnXn,BnXn-2,n=0,1,..., where A nn=0∞ and B nn=0∞ are periodic sequences of positive real numbers.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269416
@article{bwmeta1.element.doi-10_2478_s11533-008-0018-8,
     author = {Christopher Kerbert and Michael Radin},
     title = {Unbounded solutions of the max-type difference equation \[ x\_{n + 1} = max\left\lbrace  {\frac{{A\_n }}{{X\_n }},\frac{{B\_n }}{{X\_{n - 2} }}} \right\rbrace  \]
            },
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {307-324},
     zbl = {1154.39007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0018-8}
}
Christopher Kerbert; Michael Radin. Unbounded solutions of the max-type difference equation \[ x_{n + 1} = max\left\lbrace  {\frac{{A_n }}{{X_n }},\frac{{B_n }}{{X_{n - 2} }}} \right\rbrace  \]
            . Open Mathematics, Tome 6 (2008) pp. 307-324. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0018-8/

[1] Briden W.J., Grove E.A., Kent C.M., Ladas G., Eventually periodic solutions of xn+1=max1Xn,AnXn-1 , Comm. Appl. Nonlinear Anal., 1999, 6, 31–43

[2] Briden W.J., Grove E.A., Ladas G., McGrath L.C., On the nonautonomous equation xn+1=maxAnXn,BnXn-2 , New developments in difference equations and applications, Proceedings of the Third International Conference on Difference Equations and Applications (1–5 Sept. 1997 Taipei Taiwan), Gordon and Breach, Amsterdam, 1999, 49–73

[3] Grove E.A., Kent C.M., Ladas G., Radin M.A., On xn+1=max1Xn,AnXn-1 with a period 3 parameter, Fields Inst. Commun., 2001, 29, 161–180 | Zbl 0980.39012

[4] Kent C.M., Radin M.A., On the boundedness nature of positive solutions of the difference equation xn+1=maxAnXn,BnXn-2 with periodic parameters, Proceedings of the Third International DCDIS Conference on Engineering Applications and Computational Algorithms (15 May 2003 Guelph Canada), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2003, 11–15