We investigate the boundedness nature of positive solutions of the difference equation where A nn=0∞ and B nn=0∞ are periodic sequences of positive real numbers.
@article{bwmeta1.element.doi-10_2478_s11533-008-0018-8, author = {Christopher Kerbert and Michael Radin}, title = {Unbounded solutions of the max-type difference equation \[ x\_{n + 1} = max\left\lbrace {\frac{{A\_n }}{{X\_n }},\frac{{B\_n }}{{X\_{n - 2} }}} \right\rbrace \] }, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {307-324}, zbl = {1154.39007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0018-8} }
Christopher Kerbert; Michael Radin. Unbounded solutions of the max-type difference equation \[ x_{n + 1} = max\left\lbrace {\frac{{A_n }}{{X_n }},\frac{{B_n }}{{X_{n - 2} }}} \right\rbrace \] . Open Mathematics, Tome 6 (2008) pp. 307-324. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0018-8/
[1] Briden W.J., Grove E.A., Kent C.M., Ladas G., Eventually periodic solutions of , Comm. Appl. Nonlinear Anal., 1999, 6, 31–43
[2] Briden W.J., Grove E.A., Ladas G., McGrath L.C., On the nonautonomous equation , New developments in difference equations and applications, Proceedings of the Third International Conference on Difference Equations and Applications (1–5 Sept. 1997 Taipei Taiwan), Gordon and Breach, Amsterdam, 1999, 49–73
[3] Grove E.A., Kent C.M., Ladas G., Radin M.A., On with a period 3 parameter, Fields Inst. Commun., 2001, 29, 161–180 | Zbl 0980.39012
[4] Kent C.M., Radin M.A., On the boundedness nature of positive solutions of the difference equation with periodic parameters, Proceedings of the Third International DCDIS Conference on Engineering Applications and Computational Algorithms (15 May 2003 Guelph Canada), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 2003, 11–15