In recent years much work has been done analyzing maps, not assumed to be linear, between uniform algebras that preserve the norm, spectrum, or subsets of the spectra of algebra elements, and it is shown that such maps must be linear and/or multiplicative. Letting A and B be uniform algebras on compact Hausdorff spaces X and Y, respectively, it is shown here that if λ ∈ ℂ / 0 and T: A → B is a surjective map, not assumed to be linear, satisfying then T is an ℝ-linear isometry and there exist an idempotent e ∈ B, a function κ ∈ B with κ 2 = 1, and an isometric algebra isomorphism such that for all f ∈ A, where γ = λ / |λ|. Moreover, if T is unital, i.e. T(1) = 1, then T(i) = i implies that T is an isometric algebra isomorphism whereas T(i) = −i implies that T is a conjugate-isomorphism.
@article{bwmeta1.element.doi-10_2478_s11533-008-0016-x, author = {Aaron Luttman and Scott Lambert}, title = {Norm conditions for uniform algebra isomorphisms}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {272-280}, zbl = {1151.46036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0016-x} }
Aaron Luttman; Scott Lambert. Norm conditions for uniform algebra isomorphisms. Open Mathematics, Tome 6 (2008) pp. 272-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0016-x/
[1] Browder A., Introduction to function algebras, W.A. Benjamin Inc., New York-Amsterdam, 1969 | Zbl 0199.46103
[2] Hatori O., Miura T., Takagi H., Characterization of isometric isomorphisms between uniform algebras via non-linear range preserving properties, Proc. Amer. Math. Soc., 2006, 134, 2923–2930 http://dx.doi.org/10.1090/S0002-9939-06-08500-5 | Zbl 1102.46032
[3] Hatori O., Miura T., Takagi H., Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative, J. Math. Anal. Appl., 2007, 326, 281–296 http://dx.doi.org/10.1016/j.jmaa.2006.02.084 | Zbl 1113.46047
[4] Hatori O., Miura T., Takagi H., Multiplicatively spectrum-preserving and norm-preserving maps between invertible groups of commutative Banach algebras, preprint | Zbl 1113.46047
[5] Hatori O., Miura T., Takagi H., Polynomially spectrum-preserving maps between commutative Banach algebras, preprint | Zbl 1113.46047
[6] Honma D., Surjections on the algebras of continuous functions which preserve peripheral spectrum, Contemp. Math., 2007, 435, 199–205 | Zbl 1141.46324
[7] Honma D., Norm-preserving surjections on algbras of continuous functions, Rocky Mountain J. Math., to appear
[8] Jiménez-Vargas A., Luttman A., Villegas-Vallecillos M., Weakly peripherally multiplicative surjections of pointed Lipschitz algebras, preprint | Zbl 1220.46033
[9] Kowalski S., Słodkowski Z., A Characterization of maximal ideals in commutative Banach algebras, Studia Math., 1980, 67, 215–223 | Zbl 0456.46041
[10] Lambert S., Luttman A., Tonev T., Weakly peripherally-multiplicative operators between uniform algebras, Contemp. Math., 2007, 435, 265–281 | Zbl 1148.46030
[11] Li C-K., Tsing N-K., Linear preserver problems: a brief introduction and some special techniques, Linear Algebra Appl., 1992, 162/164, 217–235 http://dx.doi.org/10.1016/0024-3795(92)90377-M
[12] Luttman A., Tonev T., Uniform algebra isomorphisms and peripheral multiplicativity, Proc. Amer. Math. Soc., 2007, 135, 3589–3598 http://dx.doi.org/10.1090/S0002-9939-07-08881-8 | Zbl 1134.46030
[13] Mazur S., Ulam S., Sur les transformations isométriques d’espaces vectoriels normés, C. R. Math. Acad. Sci. Paris, 1932, 194, 946–948 | Zbl 58.0423.01
[14] Molnár L., Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc., 2001, 130, 111–120 http://dx.doi.org/10.1090/S0002-9939-01-06172-X | Zbl 0983.47024
[15] Rao N.V., Roy A.K., Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc., 2005, 133, 1135–1142 http://dx.doi.org/10.1090/S0002-9939-04-07615-4 | Zbl 1068.46028
[16] Rao N.V., Roy A.K., Multiplicatively spectrum-preserving maps of function algebras II, Proc. Edinb. Math. Soc., 2005, 48, 219–229 http://dx.doi.org/10.1017/S0013091504000719 | Zbl 1074.46033
[17] Rao N.V., Tonev T., Toneva E., Uniform algebra isomorphisms and peripheral spectra, Contemp. Math., 2007, 427, 401–416 | Zbl 1123.46035