We characterise those Hilbert algebras that are relatively pseudocomplemented posets.
@article{bwmeta1.element.doi-10_2478_s11533-008-0014-z, author = {J\=anis C\=\i rulis}, title = {Relatively pseudocomplemented Hilbert algebras}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {189-190}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0014-z} }
Jānis Cīrulis. Relatively pseudocomplemented Hilbert algebras. Open Mathematics, Tome 6 (2008) pp. 189-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0014-z/
[1] Cīrulis J., Hilbert algebras as implicative partial semilattices, Cent. Eur. J. Math., 2007, 5, 264–279 http://dx.doi.org/10.2478/s11533-007-0008-2 | Zbl 1125.03047
[2] Figallo A.V., Ramón G., Saad S., A note on Hilbert algebras with infimum, Mat. Contemp., 2003, 24, 23–37 | Zbl 1082.03057
[3] Pawar Y.S., Implicative posets, Bull. Calcutta Math. Soc., 1993, 85, 381–384 | Zbl 0813.06001
[4] Rudeanu S., On relatively pseudocomplemented posets and Hilbert algebras, An. Științ. Univ. Al. I. Cuza lași Secț. I a Mat, 1985, 31, 74–77