Here we study vector bundles E on the Hirzebruch surface F e such that their twists by a spanned, but not ample, line bundle M = Fe(h + ef) have natural cohomology, i.e. h 0(F e, E(tM)) > 0 implies h 1(F e, E(tM)) = 0.
@article{bwmeta1.element.doi-10_2478_s11533-008-0009-9, author = {Edoardo Ballico and Francesco Malaspina}, title = {Vector bundles on Hirzebruch surfaces whose twists by a non-ample line bundle have natural cohomology}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {143-148}, zbl = {1133.14311}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0009-9} }
Edoardo Ballico; Francesco Malaspina. Vector bundles on Hirzebruch surfaces whose twists by a non-ample line bundle have natural cohomology. Open Mathematics, Tome 6 (2008) pp. 143-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0009-9/
[1] Catanese F., Footnotes to a theorem of Reider, In: Sommese A.J., Biancofiore A., Livorni E.L. (Eds.), Algebraic Geometry Proceedings(L’Aquila 1988), Lecture Notesin Math. 1417, Springer, Berlin, 1990, 67–74 http://dx.doi.org/10.1007/BFb0083333
[2] Fogarty J., Algebraic families on analgebraic surface, Amer. J. Math., 1968, 90, 511–521 http://dx.doi.org/10.2307/2373541 | Zbl 0176.18401
[3] Hartshorne R., Stable reflexive sheaves, Math. Ann., 1980, 254, 121–176 http://dx.doi.org/10.1007/BF01467074 | Zbl 0431.14004
[4] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Friedr. Vieweg & Sohn, Braunschweig, 1997 | Zbl 0872.14002