Holomorphic triples of genus 0
Stefano Pasotti ; Francesco Prantil
Open Mathematics, Tome 6 (2008), p. 129-142 / Harvested from The Polish Digital Mathematics Library

Here we study the relationship between the stability of coherent systems and the stability of holomorphic triples over a curve of arbitrary genus. Moreover we apply these results to study some properties and give some examples of holomorphic triples on the projective line.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269439
@article{bwmeta1.element.doi-10_2478_s11533-008-0008-x,
     author = {Stefano Pasotti and Francesco Prantil},
     title = {Holomorphic triples of genus 0},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {129-142},
     zbl = {1137.14025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0008-x}
}
Stefano Pasotti; Francesco Prantil. Holomorphic triples of genus 0. Open Mathematics, Tome 6 (2008) pp. 129-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0008-x/

[1] Bradlow S.B., Daskalopoulos G.D., García-Prada O., Wentworth R., Stable augmented bundles over Riemann surfaces, Vector bundles in algebraic geometry (Durham 1993), London Math. Soc. Lecture Notes Ser., 1995, 208, 15–67 | Zbl 0827.14010

[2] Bradlow S.B., García-Prada O., An application of coherent systems to a Brill-Noether problem, J. Reine Angew. Math., 2002, 551, 123–143 | Zbl 1014.14012

[3] Bradlow S.B., García-Prada O., Stable triples equivariant bundles and dimensional reduction, Math. Ann., 1996, 304, 225–252 http://dx.doi.org/10.1007/BF01446292 | Zbl 0852.32016

[4] Bradlow S.B., García-Prada O., Gothen P.B., Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann., 2004, 328, 299–351 http://dx.doi.org/10.1007/s00208-003-0484-z | Zbl 1041.32008

[5] Bradlow S.B., García-Prada O., Gothen P.B., Homotopy groups of moduli spaces of representations, preprint available at http://arxiv.org/abs/math/0506444 v2 | Zbl 1165.14028

[6] Bradlow S.B., García-Prada O., Mercat V., Muñoz V., Newstead P.E., On the geometry of moduli spaces of coherent systems on algebraic curves, preprint available at http://arxiv.org/abs/math/0407523 v5 | Zbl 1117.14034

[7] Bradlow S.B., García-Prada O., Munoz V., Newstead P.E., Coherent systems and Brill-Noether theory, Internat. J. Math., 2003, 14, 683–733 http://dx.doi.org/10.1142/S0129167X03002009 | Zbl 1057.14041

[8] Grothendieck A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 1957, 79, 121–138 (in French) http://dx.doi.org/10.2307/2372388 | Zbl 0079.17001

[9] Lange H., Newstead P.E., Coherent systems on elliptic curves, Internat. J. Math., 2005, 16, 787–805 http://dx.doi.org/10.1142/S0129167X05003090 | Zbl 1078.14045

[10] Lange H., Newstead P.E., Coherent systems of genus 0, Internat. J. Math., 2004, 15, 409–424 http://dx.doi.org/10.1142/S0129167X04002326 | Zbl 1072.14039

[11] Lange H., Newstead P.E., Coherent systems of genus 0 II Existence results for k ≥ 3, Internat. J. Math., 2007, 18, 363–393 http://dx.doi.org/10.1142/S0129167X07004072 | Zbl 1114.14022

[12] Pasotti S., Prantil F., Holomorphic triples on elliptic curves, Results Math., 2007, 50, 227–239 http://dx.doi.org/10.1007/s00025-007-0248-2

[13] Schmitt A., A universal construction for the moduli spaces of decorated vector bundles, Habilitationsschrift, University of Essen, 2000