Continuous transformations preserving the Hausdorff-Besicovitch dimension (“DP-transformations”) of every subset of R 1 resp. [0, 1] are studied. A class of distribution functions of random variables with independent s-adic digits is analyzed. Necessary and sufficient conditions for dimension preservation under functions which are distribution functions of random variables with independent s-adic digits are found. In particular, it is proven that any strictly increasing absolutely continuous distribution function from the above class is a DP-function. Relations between the entropy of probability distributions, their Hausdorff-Besicovitch dimension and their DP-properties are discussed. Examples are given of singular distribution functions preserving the fractal dimension and of strictly increasing absolutely continuous functions which do not belong to the DP-class.
@article{bwmeta1.element.doi-10_2478_s11533-008-0007-y, author = {Sergio Albeverio and Mykola Pratsiovytyi and Grygoriy Torbin}, title = {Transformations preserving the Hausdorff-Besicovitch dimension}, journal = {Open Mathematics}, volume = {6}, year = {2008}, pages = {119-128}, zbl = {1134.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0007-y} }
Sergio Albeverio; Mykola Pratsiovytyi; Grygoriy Torbin. Transformations preserving the Hausdorff-Besicovitch dimension. Open Mathematics, Tome 6 (2008) pp. 119-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0007-y/
[1] Albeverio S., Pratsiovytyi M., Torbin G., Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension, Ergodic Theory Dynam. Systems, 2004, 24, 1–16 http://dx.doi.org/10.1017/S0143385703000397 | Zbl 1115.37016
[2] Albeverio S., Torbin G., Fractal properties of singular continuous probability distributions with independent Q*-digits, Bull. Sci. Math., 2005, 129, 356–367 http://dx.doi.org/10.1016/j.bulsci.2004.12.001 | Zbl 1082.11049
[3] Billingsley P., Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965 | Zbl 0141.16702
[4] Billingsley P., Hausdorff dimension in probability theory II, Illinois J. Math., 1961, 5, 291–198
[5] Chatterji S.D., Certain induced measures and the fractional dimensions of their supports, Z. Wahrscheinlichkeits-theorie, 1964, 3, 184–192 http://dx.doi.org/10.1007/BF00534907 | Zbl 0128.12504
[6] Chatterji S.D., Certain induced measures on the unit interval, J. London Math. Soc., 1963, 38, 325–331 http://dx.doi.org/10.1112/jlms/s1-38.1.325 | Zbl 0129.27002
[7] Falconer K.J., Fractal geometry, John Wiley & Sons, Chichester, 1990 | Zbl 0689.28003
[8] Fractal Geometry and stochastics, Bandt Ch., Graf S., Zähle M. (Eds.), Birkhäuser Verlag, Basel, 2000
[9] Klein F., Verschiedene Betrachtung über neuere geometrische Forschunden, Erlangen, 1872
[10] Marsaglia G., Random variables with independent binary digits, Ann. Math. Statist., 1971, 42, 1922–1929 http://dx.doi.org/10.1214/aoms/1177693058 | Zbl 0239.60015
[11] Pratsiovytyi M.V., Fractal superfractal and anomalously fractal distribution of random variables with a fixed infinite set of independent n-adic digits, Exploring stochastic laws, VSP, 1995, 409–416 | Zbl 0959.60010
[12] Pratsiovytyi M.V., Fractal approach to investigations of singular probability distributions, National Pedagogical University, Kyiv, 1998
[13] Rogers C.A., Hausdorff measures, Cambridge University Press, Cambridge, 1998 | Zbl 0915.28002
[14] Salem R., On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., 1943, 53, 423–439 http://dx.doi.org/10.2307/1990210 | Zbl 0060.13709
[15] Sauer T.D., Yorke J.A., Are the dimensions of a set and its image equal under typical smooth functions?, Ergodic Theory Dynam. Systems, 1997, 17, 941–956 http://dx.doi.org/10.1017/S0143385797086252 | Zbl 0884.28006
[16] Turbin A.F., Pratsiovytyi M.V., Fractal sets functions and distributions, Naukova Dumka, Kiev, 1992