Metrics in the sphere of a C*-module
Esteban Andruchow ; Alejandro Varela
Open Mathematics, Tome 5 (2007), p. 639-653 / Harvested from The Polish Digital Mathematics Library

Given a unital C*-algebra 𝒜 and a right C*-module 𝒳 over 𝒜 , we consider the problem of finding short smooth curves in the sphere 𝒮𝒳 = x ∈ 𝒳 : 〈x, x〉 = 1. Curves in 𝒮𝒳 are measured considering the Finsler metric which consists of the norm of 𝒳 at each tangent space of 𝒮𝒳 . The initial value problem is solved, for the case when 𝒜 is a von Neumann algebra and 𝒳 is selfdual: for any element x 0 ∈ 𝒮𝒳 and any tangent vector ν at x 0, there exists a curve γ(t) = e tZ(x 0), Z ∈ 𝒜(𝒳) , Z* = −Z and ∥Z∥ ≤ π, such that γ(0) = x 0 and γ˙ (0) = ν, which is minimizing along its path for t ∈ [0, 1]. The existence of such Z is linked to the extension problem of selfadjoint operators. Such minimal curves need not be unique. Also we consider the boundary value problem: given x 0, x 1 ∈ 𝒮𝒳 , find a curve of minimal length which joins them. We give several partial answers to this question. For instance, let us denote by f 0 the selfadjoint projection I − x 0 ⊗ x 0, if the algebra f 0 𝒜(𝒳) f 0 is finite dimensional, then there exists a curve γ joining x 0 and x 1, which is minimizing along its path.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269531
@article{bwmeta1.element.doi-10_2478_s11533-007-0025-1,
     author = {Esteban Andruchow and Alejandro Varela},
     title = {Metrics in the sphere of a C*-module},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {639-653},
     zbl = {1149.46045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0025-1}
}
Esteban Andruchow; Alejandro Varela. Metrics in the sphere of a C*-module. Open Mathematics, Tome 5 (2007) pp. 639-653. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0025-1/

[1] E. Andruchow, G. Corach and M. Mbekhta: “On the geometry of generalized inverses”, Math. Nachr., Vol. 278, (2005), no. 7–8, pp. 756–770. http://dx.doi.org/10.1002/mana.200310270 | Zbl 1086.46037

[2] E. Andruchow, G. Corach and D. Stojanoff: “Geometry of the sphere of a Hilbert module”, Math. Proc. Cambridge Philos. Soc., Vol. 127, (1999), no. 2, pp. 295–315. http://dx.doi.org/10.1017/S0305004199003771 | Zbl 0945.46042

[3] E. Andruchow, G. Corach and D. Stojanoff: “Projective spaces of a C*-algebra”, Integral Equations Operator Theory, Vol. 37, (2000), no. 2, pp. 143–168. http://dx.doi.org/10.1007/BF01192421 | Zbl 0962.46040

[4] E. Andruchow and A. Varela: “C*-modular vector states”, Integral Equations Operator Theory, Vol. 52, (2005), pp. 149–163. http://dx.doi.org/10.1007/s00020-002-1280-y | Zbl 1098.46047

[5] C.J. Atkin: “The Finsler geometry of groups of isometries of Hilbert space”, J. Austral. Math. Soc. Ser. A, Vol. 42, (1987), pp. 196–222. http://dx.doi.org/10.1017/S1446788700028202 | Zbl 0614.58007

[6] C. Davis, W.M. Kahan and H.F. Weinberger: “Norm preserving dilations and their applications to optimal error bounds”, SIAM J. Numer. Anal., Vol. 19, (1982), pp. 445–469. http://dx.doi.org/10.1137/0719029 | Zbl 0491.47003

[7] C.E. Durán, L.E. Mata-Lorenzo and L. Recht: “Metric geometry in homogeneous spaces of the unitary group of a C*-algebra. Part I. Minimal curves”, Adv. Math., Vol. 184, (2004), no. 2, pp. 342–366. http://dx.doi.org/10.1016/S0001-8708(03)00148-8 | Zbl 1060.53076

[8] C.E. Durán, L.E. Mata-Lorenzo and L. Recht: “Metric geometry in homogeneous spaces of the unitary group of a C*-algebra. Part II. Geodesics joining fixed endpoints”, Integral Equations Operator Theory, Vol. 53, (2005), no. 1, pp. 33–50. http://dx.doi.org/10.1007/s00020-003-1305-1 | Zbl 1096.53044

[9] S. Kobayashi and K. Nomizu: Foundations of differential geometry, Vol. II. Reprint of the 1969 original, Wiley Classics Library, John Wiley & Sons, New York, 1996. | Zbl 0119.37502

[10] M.G. Krein: “The theory of selfadjoint extensions of semibounded Hermitian transformations and its applications”, Mat. Sb., Vol. 20, (1947), pp. 431–495, Vol. 21, (1947), pp. 365–404 (in Russian). | Zbl 0029.14103

[11] E.C. Lance: “Hilbert C*-modules, A toolkit for operator algebraists”, London Math. Soc. Lecture Note Ser., Vol. 210, Cambridge University Press, Cambridge, 1995. | Zbl 0822.46080

[12] P.R. Halmos and J.E. McLaughlin: “Partial isometries”, Pacific J. Math., Vol. 13, (1963), pp. 585–596. | Zbl 0189.13402

[13] L.E. Mata-Lorenzo and L. Recht: “Infinite-dimensional homogeneous reductive spaces”, Acta Cient. Venezolana, Vol. 43, (1992), pp. 76–90. | Zbl 0765.53038

[14] S. Parrott: “On a quotient norm and the Sz.-Nagy-Foias lifting theorem”, J. Funct. Anal., Vol. 30, (1978), no. 3, pp. 311–328. http://dx.doi.org/10.1016/0022-1236(78)90060-5 | Zbl 0409.47004

[15] W.L. Paschke: “Inner product modules over B*-algebras”, Trans. Amer. Math. Soc., Vol. 182, (1973), pp. 443–468. http://dx.doi.org/10.2307/1996542 | Zbl 0239.46062

[16] F. Riesz and B. Sz.-Nagy: Functional Analysis, Frederick Ungar Publishing Co., New York, 1955.