Decay rates of Volterra equations on ℝN
Monica Conti ; Stefania Gatti ; Vittorino Pata
Open Mathematics, Tome 5 (2007), p. 720-732 / Harvested from The Polish Digital Mathematics Library

This note is concerned with the linear Volterra equation of hyperbolic type ttu(t)-αΔu(t)+0tμ(s)Δu(t-s)ds=0 on the whole space ℝN. New results concerning the decay of the associated energy as time goes to infinity were established.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269324
@article{bwmeta1.element.doi-10_2478_s11533-007-0024-2,
     author = {Monica Conti and Stefania Gatti and Vittorino Pata},
     title = {Decay rates of Volterra equations on $\mathbb{R}$N},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {720-732},
     zbl = {1146.35319},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0024-2}
}
Monica Conti; Stefania Gatti; Vittorino Pata. Decay rates of Volterra equations on ℝN. Open Mathematics, Tome 5 (2007) pp. 720-732. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0024-2/

[1] M. Conti, S. Gatti, V. Pata: “Uniform decay properties of linear Volterra integrodifferential equations”, Math. Models Methods Appl. Sci. (to appear). | Zbl 1152.35318

[2] C.M. Dafermos: “An abstract Volterra equation with applications to linear viscoelasticity”, J. Differential Equations, Vol. 7, (1970), pp. 554–569. http://dx.doi.org/10.1016/0022-0396(70)90101-4

[3] C.M. Dafermos: “Asymptotic stability in viscoelasticity”, Arch. Rational Mech. Anal., Vol. 37, (1970), pp. 297–308. http://dx.doi.org/10.1007/BF00251609

[4] C.M. Dafermos: “Contraction semigroups and trend to equilibrium in continuum mechanics”, in Applications of Methods of Functional Analysis to Problems in Mechanics, P. Germain and B. Nayroles Eds.), Lecture Notes in Mathematics no.503, Springer-Verlag, Berlin-New York, 1976, pp.295–306 http://dx.doi.org/10.1007/BFb0088765

[5] G. Dassios, F. Zafiropoulos: “Equipartition of energy in linearized 3-D viscoelasticity”, Quart. Appl. Math., Vol. 48, (1990), pp. 715–730. | Zbl 0723.73048

[6] M. Fabrizio, B. Lazzari: “On the existence and asymptotic stability of solutions for linear viscoelastic solids”, Arch. Rational Mech. Anal., Vol. 116, (1991), pp. 139–152. http://dx.doi.org/10.1007/BF00375589 | Zbl 0766.73013

[7] M. Fabrizio, A. Morro, “Mathematical problems in linear viscoelasticity”, SIAM Studies in Applied Mathematics no.12, SIAM Philadelphia, 1992. | Zbl 0753.73003

[8] M. Grasselli, V. Pata: “Uniform attractors of nonautonomous systems with memory”, in Evolution Equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf (Eds.), Progr. Nonlinear Differential Equations Appl. no.50, Birkhäuser Boston, 2002, pp.155–178. | Zbl 1039.34074

[9] Z. Liu, S. Zheng: “On the exponential stability of linear viscoelasticity and thermoviscoelasticity”, Quart. Appl. Math., Vol. 54, (1996), pp. 21–31. | Zbl 0868.35011

[10] J.E. Muñoz Rivera: “Asymptotic behaviour in linear viscoelasticity”, Quart. Appl. Math., Vol. 52, (1994), pp. 629–648. | Zbl 0814.35009

[11] J.E. Muñoz Rivera, E. Cabanillas Lapa: “Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomially decaying kernels”, Comm. Math. Phys., Vol. 177, (1996), pp. 583–602. http://dx.doi.org/10.1007/BF02099539 | Zbl 0852.73026

[12] V. Pata: “Exponential stability in linear viscoelasticity”, Quart. Appl. Math., Vol. 64, (2006), pp. 499–513. | Zbl 1117.35052

[13] V. Pata, A. Zucchi: “Attractors for a damped hyperbolic equation with linear memory”, Adv. Math. Sci. Appl., Vol. 11, (2001), pp. 505–529. | Zbl 0999.35014

[14] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.

[15] M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical problems in viscoelasticity, John Wiley & Sons, Inc., New York, 1987. | Zbl 0719.73013