For the dual pair considered, the Cauchy Harish-Chandra Integral, as a distribution on the Lie algebra, is the limit of the holomorphic extension of the reciprocal of the determinant. We compute that limit explicitly in terms of the Harish-Chandra orbital integrals.
@article{bwmeta1.element.doi-10_2478_s11533-007-0023-3, author = {Andrzej Daszkiewicz and Tomasz Przebinda}, title = {The Cauchy Harish-Chandra Integral, for the pair \[\mathfrak {u}\_{p,q} ,\mathfrak {u}\_1 \] }, journal = {Open Mathematics}, volume = {5}, year = {2007}, pages = {654-664}, zbl = {1204.22008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0023-3} }
Andrzej Daszkiewicz; Tomasz Przebinda. The Cauchy Harish-Chandra Integral, for the pair \[\mathfrak {u}_{p,q} ,\mathfrak {u}_1 \] . Open Mathematics, Tome 5 (2007) pp. 654-664. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0023-3/
[1] A. Bouaziz: “Intégrales orbitales sur les algèbres de Lie réductives”, Invent. Math., Vol. 115, (1994), pp. 163–207. http://dx.doi.org/10.1007/BF01231757 | Zbl 0814.22005
[2] A. Daszkiewicz and T. Przebinda: “The oscillator character formula, for isometry groups of split forms in deep stable range”, Invent. Math., Vol. 123, (1996), pp. 349–376. | Zbl 0845.22007
[3] R. Howe: “Transcending classical invariant theory”, J. Amer. Math. Soc., Vol. 2, (1989), pp. 535–552. http://dx.doi.org/10.2307/1990942 | Zbl 0716.22006
[4] L. Hörmander: The analysis of linear partial differential operators, I, Springer Verlag, Berlin, 1983.
[5] T. Przebinda: “A Cauchy Harish-Chandra integral, for a real reductive dual pair”, Invent. Math., Vol. 141, (2000), pp. 299–363. http://dx.doi.org/10.1007/s002220000070 | Zbl 0953.22014
[6] W. Schmid: “On the characters of the discrete series. The Hermitian symmetric case”, Invent. Math., Vol. 30, (1975), pp. 47–144. http://dx.doi.org/10.1007/BF01389847 | Zbl 0324.22007
[7] V.S. Varadarajan: Harmonic analysis on real reductive groups, Lecture Notes in Mathematics, Vol. 576, Springer Verlag, Berlin-New York, 1977. | Zbl 0354.43001
[8] N. Wallach: Real Reductive Groups, I, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1988.