Distributive implication groupoids
Ivan Chajda ; Radomir Halaš
Open Mathematics, Tome 5 (2007), p. 484-492 / Harvested from The Polish Digital Mathematics Library

We introduce a concept of implication groupoid which is an essential generalization of the implication reduct of intuitionistic logic, i.e. a Hilbert algebra. We prove several connections among ideals, deductive systems and congruence kernels which even coincide whenever our implication groupoid is distributive.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269646
@article{bwmeta1.element.doi-10_2478_s11533-007-0021-5,
     author = {Ivan Chajda and Radomir Hala\v s},
     title = {Distributive implication groupoids},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {484-492},
     zbl = {1134.03042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0021-5}
}
Ivan Chajda; Radomir Halaš. Distributive implication groupoids. Open Mathematics, Tome 5 (2007) pp. 484-492. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0021-5/

[1] J.C. Abbott: “Semi-boolean algebra”, Matem. Vestnik, Vol. 4, (1967), pp. 177–198. | Zbl 0153.02704

[2] I. Chajda and R. Halaš: “Algebraic properties of pre-logics”, Math. Slovaca, Vol. 52, (2002), pp. 157–175. | Zbl 1007.08003

[3] A. Diego: “Sur les algébres de Hilbert”, Col. de Logique Math. Ser. A., Vol. 21, (1967), pp. 31–34.

[4] W. Dudek: “On ideals in Hilbert algebras”, Acta Univ. Palack. Olom., Fac. rer. nat., Mathematica, Vol. 38, (1999), pp. 31–34.

[5] R. Halaš: “Remarks on commutative Hilbert algebras”, Mathem. Bohemica, Vol. 127, (2002), pp. 525–529. | Zbl 1008.03039