Harmonic conformal flows on manifolds of constant curvature
Amine Fawaz
Open Mathematics, Tome 5 (2007), p. 493-504 / Harvested from The Polish Digital Mathematics Library

We compute the energy of conformal flows on Riemannian manifolds and we prove that conformal flows on manifolds of constant curvature are critical if and only if they are isometric.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269154
@article{bwmeta1.element.doi-10_2478_s11533-007-0020-6,
     author = {Amine Fawaz},
     title = {Harmonic conformal flows on manifolds of constant curvature},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {493-504},
     zbl = {1141.53021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0020-6}
}
Amine Fawaz. Harmonic conformal flows on manifolds of constant curvature. Open Mathematics, Tome 5 (2007) pp. 493-504. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0020-6/

[1] D.E Blair: “Contact manifolds in Riemannian geometry”, Lect. Notes Math., Vol. 509, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | Zbl 0319.53026

[2] V. Borelliand F. Brito, O. Gil-Medrano: “The Infimum of The Energy of Unit Vector Fields on Odd-Dimensional Spheres”, Ann. Glob. Anal. Geom., Vol. 23 (2003), pp. 129–140. http://dx.doi.org/10.1023/A:1022404728764 | Zbl 1031.53090

[3] F. Brito and P. Chacon: “Energy of Global Frames”, To appear in the J. Aust. Math. Soc..

[4] M. Berger M. and D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold”, J. Differ. Geom., Vol. 3, (1969), pp. 379–392. | Zbl 0194.53103

[5] F. Brito, R. Langevin R. and H. Rosenberg: “Intégrales de courbure sur des variétées feuilletées.”, J. Differ. Geometry, Vol. 16, (1981), pp. 19–50. | Zbl 0472.53049

[6] P. Baird and J.C. Wood: “Harmonic Morphisms, Seifert Fibre Spaces and Conformal Foliations”, P. Lond. Math. Soc. Vol. 64, (1992), pp. 170–196. http://dx.doi.org/10.1112/plms/s3-64.1.170 | Zbl 0755.58019

[7] Y. Carrière: “Flots Riemanniens, in “Structure Transverse des Feuilletages”, Astéerisque, Vo. 116 (1984), pp. 31–52.

[8] J. Eells and J. Sampson: “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., Vol. 86, (1964), pp. 109–160. http://dx.doi.org/10.2307/2373037 | Zbl 0122.40102

[9] A. Fawaz: “Energy and Riemannian Flows”, To appear in Geometriae Dedicata. | Zbl 1179.53036

[10] A. Fawaz: “Energy and Foliations on Riemann Surfaces”, Ann. Glob. Anal. Geom., Vol. 28 (2005), pp. 75–89. http://dx.doi.org/10.1007/s10455-005-4405-0 | Zbl 1079.53042

[11] R. Langevin: “Feuilletages, énergies et cristaux liquides”, Astérisque Vols. 107-108, (1983), pp. 201–213. | Zbl 0527.53023

[12] W. Poor: Differential Geometric Structures, McGraw Hill Book Company, New York etc. 1981.

[13] P. Tondeur: Geometry of Foliations, Monographs in Math. Vol. 90, Birkhäuser, 1997. | Zbl 0905.53002

[14] G. Wiegmink: “Total bending of vector fields on the sphere S 3”, Differ. Geome. Appl., Vol. 6, (1996), pp. 219–236 http://dx.doi.org/10.1016/0926-2245(96)82419-3

[15] G. Wiegmink: “Total bending of vector fields on Riemannian manifolds”, Math. Ann., Vol. 303, (1995), pp. 325–344. http://dx.doi.org/10.1007/BF01460993 | Zbl 0834.53034

[16] C.M. Wood: “On the energy of a unit vector field”, Geometria Dedicata, Vol. 64 (1997), pp. 319–330. http://dx.doi.org/10.1023/A:1017976425512

[17] K. Yano: Integral Formulas in Riemannian Geometry, Marcel-Decker Inc., New York, 1970. | Zbl 0213.23801