We compute the energy of conformal flows on Riemannian manifolds and we prove that conformal flows on manifolds of constant curvature are critical if and only if they are isometric.
@article{bwmeta1.element.doi-10_2478_s11533-007-0020-6, author = {Amine Fawaz}, title = {Harmonic conformal flows on manifolds of constant curvature}, journal = {Open Mathematics}, volume = {5}, year = {2007}, pages = {493-504}, zbl = {1141.53021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0020-6} }
Amine Fawaz. Harmonic conformal flows on manifolds of constant curvature. Open Mathematics, Tome 5 (2007) pp. 493-504. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0020-6/
[1] D.E Blair: “Contact manifolds in Riemannian geometry”, Lect. Notes Math., Vol. 509, Springer-Verlag, Berlin-Heidelberg-New York, 1976. | Zbl 0319.53026
[2] V. Borelliand F. Brito, O. Gil-Medrano: “The Infimum of The Energy of Unit Vector Fields on Odd-Dimensional Spheres”, Ann. Glob. Anal. Geom., Vol. 23 (2003), pp. 129–140. http://dx.doi.org/10.1023/A:1022404728764 | Zbl 1031.53090
[3] F. Brito and P. Chacon: “Energy of Global Frames”, To appear in the J. Aust. Math. Soc..
[4] M. Berger M. and D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold”, J. Differ. Geom., Vol. 3, (1969), pp. 379–392. | Zbl 0194.53103
[5] F. Brito, R. Langevin R. and H. Rosenberg: “Intégrales de courbure sur des variétées feuilletées.”, J. Differ. Geometry, Vol. 16, (1981), pp. 19–50. | Zbl 0472.53049
[6] P. Baird and J.C. Wood: “Harmonic Morphisms, Seifert Fibre Spaces and Conformal Foliations”, P. Lond. Math. Soc. Vol. 64, (1992), pp. 170–196. http://dx.doi.org/10.1112/plms/s3-64.1.170 | Zbl 0755.58019
[7] Y. Carrière: “Flots Riemanniens, in “Structure Transverse des Feuilletages”, Astéerisque, Vo. 116 (1984), pp. 31–52.
[8] J. Eells and J. Sampson: “Harmonic mappings of Riemannian manifolds”, Amer. J. Math., Vol. 86, (1964), pp. 109–160. http://dx.doi.org/10.2307/2373037 | Zbl 0122.40102
[9] A. Fawaz: “Energy and Riemannian Flows”, To appear in Geometriae Dedicata. | Zbl 1179.53036
[10] A. Fawaz: “Energy and Foliations on Riemann Surfaces”, Ann. Glob. Anal. Geom., Vol. 28 (2005), pp. 75–89. http://dx.doi.org/10.1007/s10455-005-4405-0 | Zbl 1079.53042
[11] R. Langevin: “Feuilletages, énergies et cristaux liquides”, Astérisque Vols. 107-108, (1983), pp. 201–213. | Zbl 0527.53023
[12] W. Poor: Differential Geometric Structures, McGraw Hill Book Company, New York etc. 1981.
[13] P. Tondeur: Geometry of Foliations, Monographs in Math. Vol. 90, Birkhäuser, 1997. | Zbl 0905.53002
[14] G. Wiegmink: “Total bending of vector fields on the sphere S 3”, Differ. Geome. Appl., Vol. 6, (1996), pp. 219–236 http://dx.doi.org/10.1016/0926-2245(96)82419-3
[15] G. Wiegmink: “Total bending of vector fields on Riemannian manifolds”, Math. Ann., Vol. 303, (1995), pp. 325–344. http://dx.doi.org/10.1007/BF01460993 | Zbl 0834.53034
[16] C.M. Wood: “On the energy of a unit vector field”, Geometria Dedicata, Vol. 64 (1997), pp. 319–330. http://dx.doi.org/10.1023/A:1017976425512
[17] K. Yano: Integral Formulas in Riemannian Geometry, Marcel-Decker Inc., New York, 1970. | Zbl 0213.23801