Holomorphic automorphisms and collective compactness in J*-algebras of operator
José Isidro
Open Mathematics, Tome 5 (2007), p. 512-522 / Harvested from The Polish Digital Mathematics Library

Let G be the Banach-Lie group of all holomorphic automorphisms of the open unit ball B𝔄 in a J*-algebra 𝔄 of operators. Let 𝔉 be the family of all collectively compact subsets W contained in B𝔄 . We show that the subgroup F ⊂ G of all those g ∈ G that preserve the family 𝔉 is a closed Lie subgroup of G and characterize its Banach-Lie algebra. We make a detailed study of F when 𝔄 is a Cartan factor.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269061
@article{bwmeta1.element.doi-10_2478_s11533-007-0016-2,
     author = {Jos\'e Isidro},
     title = {Holomorphic automorphisms and collective compactness in J*-algebras of operator},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {512-522},
     zbl = {1145.32012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0016-2}
}
José Isidro. Holomorphic automorphisms and collective compactness in J*-algebras of operator. Open Mathematics, Tome 5 (2007) pp. 512-522. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0016-2/

[1] P.M. Anselone and T.W. Palmer: “Collectively compact sets of linear operators“, Pac. J. Math., Vol. 25, (1968), pp. 417–422. | Zbl 0157.45202

[2] L.A. Harris: “Bounded symmetric homogeneous domains in infinite-dimensional spaces“, In: Proceedings on Infinite Dimensional Holomorphy, Lecture Notes in Mathematics, Vol. 364, Springer-Verlag, 1974, pp. 13–40.

[3] L.A. Harris: “A generalization of C*-algebras“, P. Lond. Math. Soc., Vol. 42, (1981), pp. 331–361. http://dx.doi.org/10.1112/plms/s3-42.2.331

[4] L.A. Harris and W. Kaup: “Linear algebraic groups in infinite dimensions“, Illinois J.. Math., Vol. 21, (1977), pp. 666–674. | Zbl 0385.22011

[5] T. Ho, J. Martinez Moreno, A. Peralta and B. Russo: “Derivations on real and complex JB*-triples“, J. Lond. Math. Soc., Vol. 65, (2002), pp. 85–102. http://dx.doi.org/10.1112/S002461070100271X | Zbl 1015.46041

[6] J.M. Isidro and W. Kaup: “Weak continuity of holomorphic automorphisms in JB*-triples“, Math. Z., Vol. 210, (1992), pp. 277–288. http://dx.doi.org/10.1007/BF02571798 | Zbl 0812.46066

[7] J.M. Isidro and L.L. Stachó: “Weakly and weakly** continuous elements in JBW*-triples“, Acta Sci. Math. (Szeged), Vol. 57, (1993), pp. 555–567. | Zbl 0834.17046

[8] W. Kaup: “Uber die Automorphismen Grassmancher Mannigfaltigkeiten unendlicher Dimension“, Math. Z., Vol. 144, (1975), pp. 75–96. http://dx.doi.org/10.1007/BF01190938 | Zbl 0322.32014

[9] W. Kaup: “A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces“, Math. Z., Vol. 183, (1983), pp. 503–529. http://dx.doi.org/10.1007/BF01173928 | Zbl 0519.32024

[10] W. Kaup: “Hermitian Jordan Triple Systems and Automorphisms of Bounded Symmetric Domains“, In: Santoz González (Ed.): Non-Associative Algebras and Applications, Kluwer Academic Publishers, 1994, pp. 204–214.

[11] T.W. Palmer: “Totally bounded sets of precompact linear operators“, P. Am. Math. Soc., Vol. 20, (1969), pp. 101–106. http://dx.doi.org/10.2307/2035969 | Zbl 0165.47603

[12] L.L. Stachó and J.M. Isidro: “Algebraically compact elements in JB*-triples“, Acta Sci. Math. (Szeged), Vol. 54, (1990), pp. 171–190. | Zbl 0736.46053

[13] H. Upmeier: “Symmetric Banach Manifolds and Jordan C*-Algebras“, In: North Holland Mathematics Studies, Vol. 104, North Holland, Amsterdam, 1985.

[14] J.P. Viguée and J.M. Isidro: “Sur la topologie du groupe des automorphismes analytiques d’un domaine cerclé borné”, B. Sci. Math., Vol. 106, (1982), pp. 417–426. | Zbl 0546.32012