Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues
Samuel Krushkal
Open Mathematics, Tome 5 (2007), p. 551-580 / Harvested from The Polish Digital Mathematics Library

The Grunsky and Teichmüller norms ϰ(f) and k(f) of a holomorphic univalent function f in a finitely connected domain D ∋ ∞ with quasiconformal extension to ^ are related by ϰ(f) ≤ k(f). In 1985, Jürgen Moser conjectured that any univalent function in the disk Δ* = z: |z| > 1 can be approximated locally uniformly by functions with ϰ(f) < k(f). This conjecture has been recently proved by R. Kühnau and the author. In this paper, we prove that approximation is possible in a stronger sense, namely, in the norm on the space of Schwarzian derivatives. Applications of this result to Fredholm eigenvalues are given. We also solve the old Kühnau problem on an exact lower bound in the inverse inequality estimating k(f) by ϰ(f), and in the related Ahlfors inequality.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269263
@article{bwmeta1.element.doi-10_2478_s11533-007-0013-5,
     author = {Samuel Krushkal},
     title = {Strengthened Moser's conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {551-580},
     zbl = {1135.30007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0013-5}
}
Samuel Krushkal. Strengthened Moser’s conjecture, geometry of Grunsky coefficients and Fredholm eigenvalues. Open Mathematics, Tome 5 (2007) pp. 551-580. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0013-5/

[1] H. Grunsky: “Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen”, Math. Z., Vol. 45, (1939), pp. 29–61. http://dx.doi.org/10.1007/BF01580272 | Zbl 0022.15103

[2] R. Kühnau: “Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen”, Math. Nachr., Vol. 48, (1971), pp. 77–105. http://dx.doi.org/10.1002/mana.19710480107 | Zbl 0226.30021

[3] C. Pommerenke: Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

[4] I.V. Zhuravlev: “Univalent functions and Teichmüller spaces”, Preprint: Inst. of Mathematics, Novosibirsk, 1979, p. 23 (Russian). | Zbl 0467.30037

[5] S.L. Krushkal and R. Kühnau: Quasikonforme Abbildungen-neue Methoden und Anwendungen, Teubner-Texte zur Math., Bd. 54, Teubner, Leipzig, 1983. | Zbl 0539.30001

[6] R. Kühnau: “Möglichst konforme Spiegelung an einer Jordankurve”, Jber. Deutsch. Math. Verein., Vol. 90, (1988), pp. 90–109. | Zbl 0638.30021

[7] S.L. Krushkal: “Grunsky coefficient inequalities, Carathéodory metric and extremal quasiconformal mappings”, Comment. Math. Helv., Vol. 64, (1989), pp. 650–660. http://dx.doi.org/10.1007/BF02564699 | Zbl 0697.30016

[8] S.L. Krushkal and R. Kühnau: “Grunsky inequalities and quasiconformal extension”, Israel J. Math., Vol. 152, (2006), pp. 49–59. | Zbl 1126.30013

[9] R. Kühnau: “Zu den Grunskyschen Coeffizientenbedingungen”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., Vol. 6, (1981), pp. 125–130. | Zbl 0454.30016

[10] R. Kühnau: “Wann sind die Grunskyschen Koeffizientenbedingungen hinreichend für Q-quasikonforme Fortsetzbarkeit?”, Comment. Math. Helv., Vol. 61, (1986), pp. 290–307. http://dx.doi.org/10.1007/BF02621917 | Zbl 0605.30023

[11] S.L. Krushkal: “Beyond Moser’s conjecture on Grunsky inequalities”, Georgian Math. J., Vol. 12, (2005), pp. 485–492. | Zbl 1087.30042

[12] Y.L. Shen: “Pull-back operators by quasisymmetric functions and invariant metrics on Teichmüller spaces”, Complex Variables, Vol. 42, (2000), pp. 289–307. | Zbl 1023.30024

[13] L. Ahlfors: “An extension of Schwarz’s lemma”, Trans. Amer. Math. Soc., Vol. 43, (1938), pp. 359–364. http://dx.doi.org/10.2307/1990065 | Zbl 64.0315.04

[14] D. Gaier: Konstruktive Methoden der konformen Abbildung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. | Zbl 0132.36702

[15] R. Kühnau: “Zur Berechnung der Fredholmschen Eigenwerte ebener Kurven”, Z. Angew. Math. Mech., Vol. 66, (1986), pp. 193–200. http://dx.doi.org/10.1002/zamm.19860660602 | Zbl 0608.65092

[16] M. Schiffer: “Fredholm eigenvalues and Grunsky matrices”, Ann. Polon. Math., Vol. 39, (1981), pp. 149–164.

[17] G. Schober: “Estimates for Fredholm eigenvalues based on quasiconformal mapping.” In: Numerische, insbesondere approximationstheoretische Behandlung von Funktiongleichungen, Lecture Notes in Math., Vol. 333, Springer-Verlag, Berlin, (1973), pp. 211–217. http://dx.doi.org/10.1007/BFb0060699

[18] S.E. Warschawski: “On the effective determination of conformal maps”, In: L. Ahlfors, E. Calabi et al. (Eds.): Contribution to the Theory of Riemann surfaces, Princeton Univ. Press, Princeton, (1953), pp. 177–188. | Zbl 0052.35403

[19] L. Ahlfors: “Remarks on the Neumann-Poincaré integral equation”, Pacific J. Math. Vol. 2, (1952), pp. 271–280. | Zbl 0047.07907

[20] S.L. Krushkal: “Quasiconformal extensions and reflections”, In: R. Kühnau (Ed.): Handbook of Complex Analysis: Geometric Function Theory, Vol. II, Elsevier Science, Amsterdam, 2005, pp. 507–553.

[21] K. Strebel: “On the existence of extremal Teichmueller mappings”, J. Anal. Math, Vol. 30, (1976), pp. 464–480. | Zbl 0334.30013

[22] F.P. Gardiner and N. Lakic: Quasiconformal Teichmüller Theory, Amer. Math. Soc., 2000.

[23] S. Dineen: The Schwarz Lemma, Clarendon Press, Oxford, 1989.

[24] S. Kobayayshi: Hyperbolic Complex Spaces, Springer, New York, 1998.

[25] C.J. Earle, I. Kra and S.L. Krushkal: “Holomorphic motions and Teichmüller spaces”, Trans. Amer. Math. Soc., Vol. 944, (1994), pp. 927–948. http://dx.doi.org/10.2307/2154750 | Zbl 0812.30018

[26] C.J. Earle and S. Mitra: “Variation of moduli under holomorphic motions”, In: Stony Brook, NY, 1998: The tradition of Ahlfors and Bers, Contemp. Math. Vol. 256, Amer. Math. Soc., Providence, RI, 2000, pp. 39–67. | Zbl 0972.30005

[27] H.L. Royden: “Automorphisms and isometries of Teichmüller space”, Advances in the Theory of Riemann Surfaces (Ann. of Math. Stud.), Vol. 66, Princeton Univ. Press, Princeton, (1971), pp. 369–383.

[28] S.L. Krushkal: “Plurisubharmonic features of the Teichmüller metric”, Publications de l’Institut Mathématique-Beograd, Nouvelle série, Vol. 75, (2004), pp. 119–138. | Zbl 1079.30019

[29] N.A. Lebedev: The Area Principle in the Theory of Univalent Functions, Nauka, Moscow, 1975 (Russian). | Zbl 0747.30015

[30] I.M. Milin: “Univalent Functions and Orthonormal Systems”, Transl. of mathematical monographs, vol. 49, Transl. of Odnolistnye funktcii i normirovannie systemy, Amer. Math. Soc., Providence, RI, 1977.

[31] M. Schiffer and D. Spencer: Functionals of finite Riemann Surfaces, Princeton Univ. Press, Princeton, 1954.

[32] S. L. Krushkal: “Schwarzian derivative and complex Finsler metrics”, Contemporary Math., Vol. 382, (2005), pp. 243–262. | Zbl 1085.30009

[33] D. Minda: “The strong form of Ahlfors’ lemma”, Rocky Mountain J. Math., Vol. 17, (1987), pp. 457–461. http://dx.doi.org/10.1216/RMJ-1987-17-3-457 | Zbl 0628.30031

[34] M. Abate and G. Patrizio: “Isometries of the Teichmüller metric”, Ann. Scuola Super. Pisa Cl. Sci., Vol. 26, (1998), pp. 437–452. | Zbl 0933.32027

[35] V. Božin, N. Lakic, V. Markovic and M. Mateljević: “Unique extremality”, J. Anal. Math., Vol. 75, (1998), pp. 299–338. http://dx.doi.org/10.1007/BF02788704 | Zbl 0929.30017

[36] C.J. Earle and Zong Li: “Isometrically embedded polydisks in infinite dimensional Teichmüller spaces”, J. Geom. Anal., Vol. 9, (1999), pp. 51–71. | Zbl 0963.32004

[37] M. Heins: “A class of conformal metrics”, Nagoya Math. J., Vol. 21, (1962), pp. 1–60. | Zbl 0113.05603

[38] S.L. Krushkal: Quasiconformal Mappings and Riemann Surfaces, Wiley, New York, 1979.

[39] S.L. Krushkal: “A bound for reflections across Jordan curves”, Georgian Math. J., Vol. 10, (2003), pp. 561–572. | Zbl 1061.30041

[40] R. Kühnau: “Über die Grunskyschen Koeffizientenbedingungen”, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, Vol. 54, (2000), pp. 53–60.

[41] O. Lehto: Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987.

[42] Yu.G. Reshetnyak: “Two-dimensional manifolds of bounded curvature”, Geometry, IV, Encyclopaedia Math. Sci., Vol. 70, Springer, Berlin, 1993, pp. 3–163, 245–250. Engl. transl. from: iTwo-dimensional manifolds of bounded curvature, Geometry, 4, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 189, 273–277, 279 (Russian).

[43] H.L. Royden: “The Ahlfors-Schwarz lemma: the case of equality”, J. Anal. Math., Vol. 46, (1986), pp. 261–270. | Zbl 0604.30027