Let E be a uniformly convex Banach space and K a nonempty convex closed subset which is also a nonexpansive retract of E. Let T 1, T 2 and T 3: K → E be asymptotically nonexpansive mappings with k n, l n and j n. [1, ∞) such that Σn=1∞(k n − 1) < ∞, Σn=1∞(l n − 1) < ∞ and Σn=1∞(j n − 1) < ∞, respectively and F nonempty, where F = x ∈ K: T 1x = T 2x = T 3 x = xdenotes the common fixed points set of T 1, T 2 and T 3. Let α n, α′ n and α″ n be real sequences in (0, 1) and ∈ ≤ α n, α′ n, α″ n ≤ 1 − ∈ for all n ∈ N and some ∈ > 0. Starting from arbitrary x 1 ∈ K define the sequence x n by (i) If the dual E* of E has the Kadec-Klee property then x n converges weakly to a common fixed point p ∈ F; (ii) If T satisfies condition (A′) then x n converges strongly to a common fixed point p ∈ F.
@article{bwmeta1.element.doi-10_2478_s11533-007-0010-8, author = {Xiaolong Qin and Yongfu Su and Meijuan Shang}, title = {Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces}, journal = {Open Mathematics}, volume = {5}, year = {2007}, pages = {345-357}, zbl = {1140.47055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0010-8} }
Xiaolong Qin; Yongfu Su; Meijuan Shang. Approximating common fixed points of asymptotically nonexpansive mappings by composite algorithm in Banach spaces. Open Mathematics, Tome 5 (2007) pp. 345-357. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0010-8/
[1] C.E. Chidume, E.U. Ofoedu and H. Zegeye: “Strong and weak convergence theorems for asymptotically nonexpansive mappings”, J. Math., Anal. Appl., Vol. 280, (2003), pp. 364–374. http://dx.doi.org/10.1016/S0022-247X(03)00061-1 | Zbl 1057.47071
[2] W.J. Davis and P. Enflo: Contractive projections on l p -spaces, Analysis at Urbana 1, Cambridge University Press, New York, 1989, pp. 151–161. | Zbl 0696.46015
[3] J.G. Falset, W. Kaczor, T. Kuczumow and S. Reich:, “Weak convergence theorems for asymptotically nonexpansive mappings and semigroups”, Nonlinear Anal., Vol. 43, (2001), pp. 377–401. http://dx.doi.org/10.1016/S0362-546X(99)00200-X | Zbl 0983.47040
[4] K. Goebel and W.A. Kirk: “A fixed point theorem for asymptotically nonexpansive mappings”, Proc. Amer. Math. Soc., Vol. 35, (1972), pp. 171–174. http://dx.doi.org/10.2307/2038462 | Zbl 0256.47045
[5] W. Kaczor: “Weak convergence of almost orbits of asymptotically nonexpansive commutative semigroups”, J. Math. Anal. Appl., Vol. 272, (2002), pp. 565–574. http://dx.doi.org/10.1016/S0022-247X(02)00175-0 | Zbl 1058.47049
[6] M. Maiti and M.K. Gosh: “Approximating fixed points by Ishikawa iterates”, Bull. Austral. Math. Soc., Vol. 40, (1989), pp. 113–117. | Zbl 0667.47030
[7] M.O. Osilike and S.C. Aniagbosor: “Weak and strong convergence theorems for fixed points for asymptotically nonexpansive mappings”, Math. Comput. Modelling, Vol. 32, (2000), pp. 1181–1191. http://dx.doi.org/10.1016/S0895-7177(00)00199-0 | Zbl 0971.47038
[8] B.E. Rhoades: “Fixed point iterations for certain nonlinear mappings”, J. Math. Anal. Appl., Vol. 183, (1994), pp. 118–120. http://dx.doi.org/10.1006/jmaa.1994.1135
[9] H.F. Senter and W.G. Doston: “Approximating fixed points of nonexpansive mapping”, Proc. Amer. Math. Soc., Vol. 44(2), (1974), pp. 375–380. http://dx.doi.org/10.2307/2040440 | Zbl 0299.47032
[10] J. Schu: “Iterative construction of fixed points of asymptotically nonexpansive mappings”, J. Math. Anal. Appl., Vol. 158, (1991), pp. 407–413. http://dx.doi.org/10.1016/0022-247X(91)90245-U
[11] J. Schu: “Weak and strong convergence to fixed points of asymptotically nonexpansive mappings”, Bull. Austral. Math. Soc., Vol. 43, (1991), pp. 153–159. http://dx.doi.org/10.1017/S0004972700028884 | Zbl 0709.47051
[12] N. Shahzad: “Approximating fixed points of non-self nonexpansive mappings in Banach spaces”, Nonlinear Anal., Vol. 61, (2005), pp. 1031–1039. http://dx.doi.org/10.1016/j.na.2005.01.092 | Zbl 1089.47058
[13] K.K. Tan and H.K. Xu: “Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process”, J. Math. Anal. Appl., Vol. 178, (1993), pp. 301–308. http://dx.doi.org/10.1006/jmaa.1993.1309 | Zbl 0895.47048