A-monotone nonlinear relaxed cocoercive variational inclusions
Ram Verma
Open Mathematics, Tome 5 (2007), p. 386-396 / Harvested from The Polish Digital Mathematics Library

Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269339
@article{bwmeta1.element.doi-10_2478_s11533-007-0005-5,
     author = {Ram Verma},
     title = {A-monotone nonlinear relaxed cocoercive variational inclusions},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {386-396},
     zbl = {1128.49011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0005-5}
}
Ram Verma. A-monotone nonlinear relaxed cocoercive variational inclusions. Open Mathematics, Tome 5 (2007) pp. 386-396. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-007-0005-5/

[1] R.P. Agarwal, Y.J. Cho and and N.J. Huang: “Sensitivity Analysis for Strongly Nonlinear Quasi-Variational Inclusions”, Appl. Math. Lett., Vol. 13, (2000), pp. 19–24. http://dx.doi.org/10.1016/S0893-9659(00)00048-3 | Zbl 0960.47035

[2] R.L. Tobin: “Sensitivity Analysis for Variational Inequalities”, J. Optimization Theory Appl., Vol. 48, (1986), pp. 191–204. | Zbl 0557.49004

[3] Y.P. Fang and N.J. Huang: “H - Monotone Operator and Resolvent Operator Technique for Variational Inclusions”, Appl. Math. Comput., Vol. 145, (2003), pp. 795–803. http://dx.doi.org/10.1016/S0096-3003(03)00275-3 | Zbl 1030.49008

[4] Y.P. Fang and N.J. Huang: “H - Monotone Operators and System of Variational Inclusions”, Commun. Appl. Nonlinear Anal., Vol. 11, (2004), pp. 93–101. | Zbl 1040.49007

[5] Z. Liu, J.S. Ume and S.M. Kang: “H - Monotone Operator and Resolvent Operator Technique for Nonlinear Variational Inclusions”, Math. Inequal. Appl., to appear.

[6] R.U. Verma: “A-Monotonicity and Applications to Nonlinear Variational Inclusion Problems”, J. Appl. Math. Stochastic Anal., Vol. 17, (2004), pp. 193–195. http://dx.doi.org/10.1155/S1048953304403013 | Zbl 1064.49012

[7] R.U. Verma: “Approximation-Solvability of a Class of A-Monotone Variational Inclusion Problems“, J. Optimization Theory Appl., Vol. 100, (1999), pp. 195–205. http://dx.doi.org/10.1023/A:1021777217261

[8] N.J. Huang and Y.P. Fang: “Auxiliary Principle Technique for Solving Generalized Set-Valued Nonlinear Quasi-Variational-Like Inequalities”, Math. Inequal. Appl., Vol. 6, (2003), pp. 339–350. | Zbl 1031.49015

[9] H. Iiduka and W. Takahashi: “Strong Convergence Theorem by a Hybrid Method for Nonlinear Mappings of Nonexpansive and Monotone Type and Applications”, Adv. Nonlinear Var. Inequal., Vol. 9, (2006), pp. 1–9. | Zbl 1090.49011

[10] J. Kyparisis: “Sensitivity Analysis Framework for Variational Inequalities”, Math. Program., Vol. 38, (1987), pp. 203–213.

[11] A. Moudafi: “Mixed Equilibrium Problems: Sensitivity Analysis and Algorithmic Aspect”, Comput. Math. Appl., Vol. 44, (2002), pp. 1099–1108. http://dx.doi.org/10.1016/S0898-1221(02)00218-3 | Zbl 1103.49301

[12] R.U. Verma: “Nonlinear Variational and Constrained Hemivariational Inequalities Involving Relaxed Operators”, ZAMM: Z. Angew. Math. Mech., Vol. 77, (1997), pp. 387–391. | Zbl 0886.49006

[13] R.U. Verma: “Generalized System for Relaxed Cocoercive Variational Inequalities and Projection Methods”, J. Optimization Theory Appl., Vol. 121, (2004), pp. 203–210. http://dx.doi.org/10.1023/B:JOTA.0000026271.19947.05

[14] R.U. Verma: “Generalized Partial Relaxed Monotonicity and Nonlinear Variational Inequalities”, Int. J. Appl. Math., Vol. 9, (2002), pp. 355–363. | Zbl 1025.49008

[15] W.Y. Yan, Y.P. Fang and N.J. Huang: “A New System of Set-Valued Variational Inclusions with H-Monotone Operators”, Math. Inequal. Appl., Vol. 8, (2005), pp. 537–546. | Zbl 1070.49007

[16] R. Wittmann: “Approximation of Fixed Points of Nonexpansive Mappings”, Archiv der Mathematik, Vol. 58, 1992, pp. 486–491. http://dx.doi.org/10.1007/BF01190119 | Zbl 0797.47036

[17] E. Zeidler: Nonlinear Functional Analysis and its Applications, Vol. II/A, Springer-Verlag, New York, NY, 1985. | Zbl 0583.47051

[18] E. Zeidler: Nonlinear Functional Analysis and its Applications, Vol. II/B, Springer-Verlag, New York, NY, 1990. | Zbl 0684.47029