Comparison theorems for noncanonical third order nonlinear differential equations
Ivan Mojsej ; Ján Ohriska
Open Mathematics, Tome 5 (2007), p. 154-163 / Harvested from The Polish Digital Mathematics Library

The aim of our paper is to study oscillatory and asymptotic properties of solutions of nonlinear differential equations of the third order with quasiderivatives. We prove comparison theorems on property A between linear and nonlinear equations. Some integral criteria ensuring property A for nonlinear equations are also given. Our assumptions on the nonlinearity of f are restricted to its behavior only in a neighborhood of zero and a neighborhood of infinity.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269181
@article{bwmeta1.element.doi-10_2478_s11533-006-0044-3,
     author = {Ivan Mojsej and J\'an Ohriska},
     title = {Comparison theorems for noncanonical third order nonlinear differential equations},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {154-163},
     zbl = {1128.34021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0044-3}
}
Ivan Mojsej; Ján Ohriska. Comparison theorems for noncanonical third order nonlinear differential equations. Open Mathematics, Tome 5 (2007) pp. 154-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0044-3/

[1] M. Cecchi, Z. Došlá and M. Marini: “On nonlinear oscillations for equations associated to disconjugate operators”, Nonlinear Analysis, Theory, Methods & Applications, Vol. 30(3), (1997), pp. 1583–1594. http://dx.doi.org/10.1016/S0362-546X(97)00028-X | Zbl 0892.34032

[2] M. Cecchi, Z. Došlá and M. Marini: “Comparison theorems for third order differential equations”, Proceeding of Dynamic Systems and Applications, Vol. 2, (1996), pp. 99–106. | Zbl 0873.34021

[3] M. Cecchi, Z. Došlá and M. Marini: “Asymptotic behavior of solutions of third order delay differential equations”, Archivum Mathematicum(Brno), Vol. 33, (1997), pp. 99–108. | Zbl 0916.34059

[4] M. Cecchi, Z. Došlá and M. Marini: “Some properties of third order differential operators”, Czech. Math. J., Vol. 47(122), (1997), pp. 729–748. http://dx.doi.org/10.1023/A:1022878804065 | Zbl 0903.34032

[5] M. Cecchi, Z. Došlá and M. Marini: “An Equivalence Theorem on Properties A, B for Third Order Differential Equations”, Annali di Matematica pura ed applicata (IV), Vol. CLXXIII, (1997), pp. 373–389. http://dx.doi.org/10.1007/BF01783478 | Zbl 0937.34029

[6] M. Cecchi, Z. Došlá, M. Marini and Gab. Villari: “On the qualitative behavior of solutions of third order differential equations”, J. Math. Anal. Appl., Vol. 197, (1996), pp. 749–766. http://dx.doi.org/10.1006/jmaa.1996.0050 | Zbl 0856.34034

[7] J. Džurina: “Property (A) of n-th order ODE’s”, Mathematica Bohemica, Vol. 122(4), (1997), pp. 349–356. | Zbl 0903.34031

[8] T. Kusano and M. Naito: “Comparison theorems for functional differential equations with deviating arguments”, J. Math. Soc. Japan, Vol. 33(3), (1981), pp. 509–532. http://dx.doi.org/10.2969/jmsj/03330509 | Zbl 0494.34049

[9] I. Mojsej and J. Ohriska: “On solutions of third order nonlinear differential equations”, CEJM, Vol. 4(1), (2006), pp. 46–63. | Zbl 1104.34048

[10] J. Ohriska: “Oscillatory and asymptotic properties of third and fourth order linear differential equations”, Czech. Math. J., Vol. 39(114), (1989), pp. 215–224. | Zbl 0688.34018

[11] J. Ohriska: “Adjoint differential equations and oscillation”, J. Math. Anal. Appl., Vol. 195, (1995), pp. 778–796. http://dx.doi.org/10.1006/jmaa.1995.1389 | Zbl 0847.34037

[12] V. Šeda: “Nonoscillatory solutions of differential equations with deviating argument”, Czech. Math. J., Vol. 36(111), (1986), pp. 93–107. | Zbl 0603.34064