The aim of our paper is to study oscillatory and asymptotic properties of solutions of nonlinear differential equations of the third order with quasiderivatives. We prove comparison theorems on property A between linear and nonlinear equations. Some integral criteria ensuring property A for nonlinear equations are also given. Our assumptions on the nonlinearity of f are restricted to its behavior only in a neighborhood of zero and a neighborhood of infinity.
@article{bwmeta1.element.doi-10_2478_s11533-006-0044-3, author = {Ivan Mojsej and J\'an Ohriska}, title = {Comparison theorems for noncanonical third order nonlinear differential equations}, journal = {Open Mathematics}, volume = {5}, year = {2007}, pages = {154-163}, zbl = {1128.34021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0044-3} }
Ivan Mojsej; Ján Ohriska. Comparison theorems for noncanonical third order nonlinear differential equations. Open Mathematics, Tome 5 (2007) pp. 154-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0044-3/
[1] M. Cecchi, Z. Došlá and M. Marini: “On nonlinear oscillations for equations associated to disconjugate operators”, Nonlinear Analysis, Theory, Methods & Applications, Vol. 30(3), (1997), pp. 1583–1594. http://dx.doi.org/10.1016/S0362-546X(97)00028-X | Zbl 0892.34032
[2] M. Cecchi, Z. Došlá and M. Marini: “Comparison theorems for third order differential equations”, Proceeding of Dynamic Systems and Applications, Vol. 2, (1996), pp. 99–106. | Zbl 0873.34021
[3] M. Cecchi, Z. Došlá and M. Marini: “Asymptotic behavior of solutions of third order delay differential equations”, Archivum Mathematicum(Brno), Vol. 33, (1997), pp. 99–108. | Zbl 0916.34059
[4] M. Cecchi, Z. Došlá and M. Marini: “Some properties of third order differential operators”, Czech. Math. J., Vol. 47(122), (1997), pp. 729–748. http://dx.doi.org/10.1023/A:1022878804065 | Zbl 0903.34032
[5] M. Cecchi, Z. Došlá and M. Marini: “An Equivalence Theorem on Properties A, B for Third Order Differential Equations”, Annali di Matematica pura ed applicata (IV), Vol. CLXXIII, (1997), pp. 373–389. http://dx.doi.org/10.1007/BF01783478 | Zbl 0937.34029
[6] M. Cecchi, Z. Došlá, M. Marini and Gab. Villari: “On the qualitative behavior of solutions of third order differential equations”, J. Math. Anal. Appl., Vol. 197, (1996), pp. 749–766. http://dx.doi.org/10.1006/jmaa.1996.0050 | Zbl 0856.34034
[7] J. Džurina: “Property (A) of n-th order ODE’s”, Mathematica Bohemica, Vol. 122(4), (1997), pp. 349–356. | Zbl 0903.34031
[8] T. Kusano and M. Naito: “Comparison theorems for functional differential equations with deviating arguments”, J. Math. Soc. Japan, Vol. 33(3), (1981), pp. 509–532. http://dx.doi.org/10.2969/jmsj/03330509 | Zbl 0494.34049
[9] I. Mojsej and J. Ohriska: “On solutions of third order nonlinear differential equations”, CEJM, Vol. 4(1), (2006), pp. 46–63. | Zbl 1104.34048
[10] J. Ohriska: “Oscillatory and asymptotic properties of third and fourth order linear differential equations”, Czech. Math. J., Vol. 39(114), (1989), pp. 215–224. | Zbl 0688.34018
[11] J. Ohriska: “Adjoint differential equations and oscillation”, J. Math. Anal. Appl., Vol. 195, (1995), pp. 778–796. http://dx.doi.org/10.1006/jmaa.1995.1389 | Zbl 0847.34037
[12] V. Šeda: “Nonoscillatory solutions of differential equations with deviating argument”, Czech. Math. J., Vol. 36(111), (1986), pp. 93–107. | Zbl 0603.34064