Slice modules over minimal 2-fundamental algebras
Zygmunt Pogorzały ; Karolina Szmyt
Open Mathematics, Tome 5 (2007), p. 164-180 / Harvested from The Polish Digital Mathematics Library

We consider a class of algebras whose Auslander-Reiten quivers have starting components that are not generalized standard. For these components we introduce a generalization of a slice and show that only in finitely many cases (up to isomorphism) a slice module is a tilting module.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:269709
@article{bwmeta1.element.doi-10_2478_s11533-006-0039-0,
     author = {Zygmunt Pogorza\l y and Karolina Szmyt},
     title = {Slice modules over minimal 2-fundamental algebras},
     journal = {Open Mathematics},
     volume = {5},
     year = {2007},
     pages = {164-180},
     zbl = {1120.16016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0039-0}
}
Zygmunt Pogorzały; Karolina Szmyt. Slice modules over minimal 2-fundamental algebras. Open Mathematics, Tome 5 (2007) pp. 164-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0039-0/

[1] I. Assem: “Tilting theory - an introduction”, In: Topics in Algebras, Banach Center Publications, Vol. 26, Part I, PWN, Warszawa, 1990, pp. 127–180.

[2] M. Auslander and I. Reiten: “Representation theory of artin algebras III”, Comm. Alg., Vol. 3, (1975), pp. 239–294.

[3] M. Auslander and I. Reiten: “Representation theory of artin algebras IV”, Comm. Alg., Vol. 5, (1977), pp. 443–518.

[4] M. Auslander, I. Reiten and S.O. Smalø: Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math., Vol. 36, Cambridge Univ. Press, Cambridge, 1995.

[5] K. Bongartz: Tilted algebras, LNM 903, Springer, Berlin, 1981, pp. 26–38.

[6] M.C.R. Butler and C.M. Ringel: “Auslander-Reiten sequences with few middle terms and applications to string algebras”, Comm. Alg., Vol. 15, (1987), pp. 145–179. | Zbl 0612.16013

[7] P. Dowbor and A. Skowroński: “Galois coverings of representation-infinite algebras”, Comment. Math. Helv., Vol. 62, (1987), pp. 311–337. | Zbl 0628.16019

[8] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, INM 831, Springer, Berlin, 1980, pp. 1–71. | Zbl 0445.16023

[9] D. Happel and C.M. Ringel: “Tilted algebras”, Trans. Amer. Math. Soc., Vol. 274, (1982), pp. 399–443. http://dx.doi.org/10.2307/1999116

[10] F. Huard: “Tilted gentle algebras”, Comm. Alg., Vol. 26(1), (1998), pp. 63–72. | Zbl 0898.16010

[11] F. Huard and Sh. Liu: “Tilted special biserial algebras”, J. Algebra, Vol. 217, (1999), pp. 679–700. http://dx.doi.org/10.1006/jabr.1998.7828

[12] F. Huard and Sh. Liu: “Tilted string algebras”, J. Pure Appl. Algebra, Vol. 153, (2000), pp. 151–164. http://dx.doi.org/10.1016/S0022-4049(99)00101-2 | Zbl 0962.16009

[13] Z. Pogorzały and M. Sufranek: “Starting and ending components of the Auslander-Reiten quivers of a class of special biserial algebras”, Colloq. Math., Vol. 99(1), (2004), pp. 111–144. | Zbl 1107.16022

[14] C.M. Ringel: Tame algebras and integral quadratic forms, LNM 1099, Springer, Berlin, 1984.

[15] J. Schröer: “Modules without self-extensions over gentle algebras”, J. Algebra, Vol. 216, (1999), pp. 178–189. http://dx.doi.org/10.1006/jabr.1998.7696

[16] A. Skowroński: “Generalized standard Auslander-Reiten components”, J. Math. Soc. Japan, Vol. 46, (1994), pp. 517–543. http://dx.doi.org/10.2969/jmsj/04630517 | Zbl 0828.16011

[17] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. | Zbl 0511.16021

[18] B. Wald and J. Waschbüsch: “Tame biserial algebras”, J. Algebra, Vol. 95, (1985), pp. 480–500. http://dx.doi.org/10.1016/0021-8693(85)90119-X | Zbl 0567.16017