We provide explicit information geometric tubular neighbourhoods containing all bivariate distributions sufficiently close to the cases of independent Poisson or Gaussian processes. This is achieved via affine immersions of the 4-manifold of Freund bivariate distributions and of the 5-manifold of bivariate Gaussians. We provide also the α-geometry for both manifolds. The Central Limit Theorem makes our neighbourhoods of independence limiting cases for a wide range of bivariate distributions; the topological character of the results makes them stable under small perturbations, which is important for applications in models of stochastic processes.
@article{bwmeta1.element.doi-10_2478_s11533-006-0034-5, author = {Khadiga Arwini and Christopher Dodson}, title = {Neighbourhoods of independence and associated geometry in manifolds of bivariate Gaussian and Freund distributions}, journal = {Open Mathematics}, volume = {5}, year = {2007}, pages = {50-83}, zbl = {1126.53010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0034-5} }
Khadiga Arwini; Christopher Dodson. Neighbourhoods of independence and associated geometry in manifolds of bivariate Gaussian and Freund distributions. Open Mathematics, Tome 5 (2007) pp. 50-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0034-5/
[1] S.-I. Amari, O.E. Barndorff-Neilsen, R.E. Kass, S.L. Lauritzen and C.R. Rao: Differential Geometrical Methods in Statistics, Springer Lecture Notes in Statistics 28, Springer-Verlag, Berlin, 1985.
[2] S-I. Amari and H. Nagaoka: Methods of Information Geometry, American Mathematical Society, Oxford University Press, 2000.
[3] Khadiga Arwini: Differential geometry in neighbourhoods of randomness and independence, PhD thesis, UMIST, 2004.
[4] Khadiga Arwini and C.T.J. Dodson: “Information geometric neighbourhoods of randomness and geometry of the McKay bivariate gamma 3-manifold”, Sankhya: Indian Journal of Statistics, Vol. 66(2), (2004), pp. 211–231. | Zbl 1192.60008
[5] Khadiga Arwini and C.T.J. Dodson: “Neighbourhoods of independence for random processes via information geometry”, Math. J., Vol. 9(4), (2005). | Zbl 1192.60008
[6] Khadiga Arwini, L. Del Riego and C.T.J. Dodson: “Universal connection and curvature for statistical manifold geometry”, Houston J. Math., in press, (2006). | Zbl 1126.53021
[7] Y. Cai, C.T.J. Dodson, O. Wolkenhauer and A.J. Doig: “Gamma Distribution Analysis of Protein Sequences shows that Amino Acids Self Cluster”, J. Theoretical Biology, Vol. 218(4), (2002), pp. 409–418.
[8] C.T.J. Dodson: “Spatial statistics and information geometry for parametric statistical models of galaxy clustering”, Int. J. Theor. Phys., Vol. 38(10), (1999), pp. 2585–2597. http://dx.doi.org/10.1023/A:1026609310371
[9] C.T.J. Dodson: “Geometry for stochastically inhomogeneous spacetimes”, Nonlinear Analysis, Vol. 47, (2001), pp. 2951–2958. http://dx.doi.org/10.1016/S0362-546X(01)00416-3 | Zbl 1042.85500
[10] C.T.J. Dodson and Hiroshi Matsuzoe: “An affine embedding of the gamma manifold”, Appl. Sci., Vol. 5(1), (2003), pp. 1–6. | Zbl 1016.60010
[11] R.J. Freund: “A bivariate extension of the exponential distribution”, J. Am. Stat. Assoc., Vol. 56, (1961), pp. 971–977. http://dx.doi.org/10.2307/2282007 | Zbl 0106.13304
[12] T.P. Hutchinson and C.D. Lai: Continuous Multivariate Distributions, Emphasising Applications, Rumsby Scientific Publishing, Adelaide 1990. | Zbl 1170.62330
[13] S. Kotz, N. Balakrishnan and N. Johnson: Continuous Multivariate Distributions, Volume 1, 2nd ed., John Wiley, New York, 2000. | Zbl 0946.62001
[14] S. Leurgans, T.W.-Y. Tsai and J. Crowley: “Freund’s bivariate exponential distribution and censoring”, In: R.A. Johnson (Ed.): Survival Analysis, IMS Lecture Notes, Hayward, California, Institute of Mathematical Statistics, 1982.
[15] A.F.S. Mitchell: “The information matrix, skewness tensor and α-connections for the general multivariate elliptic distribution”, Ann. Ins. Stat. Math., Vol. 41, (1989), pp. 289–304. http://dx.doi.org/10.1007/BF00049397 | Zbl 0691.62049
[16] Y. Sato, K. Sugawa and M. Kawaguchi: The geometrical structure of the parameter space of the two-dimensional normal distribution, Division of information engineering, Hokkaido University, Sapporo, Japan, 1977. | Zbl 0443.53046
[17] L.T. Skovgaard: “A Riemannian geometry of the multivariate normal model”, Scandinavian J. Stat., Vol. 11, (1984), pp. 211–223. | Zbl 0579.62033