σ-asymptotically lacunary statistical equivalent sequences
Ekrem Savaş ; Richard Patterson
Open Mathematics, Tome 4 (2006), p. 648-655 / Harvested from The Polish Digital Mathematics Library

This paper presents the following definitions which is a natural combination of the definition for asymptotically equivalent, statistically limit, lacunary sequences, and σ-convergence. Let ϑ be a lacunary sequence; Two nonnegative sequences [x] and [y] are S σ,8-asymptotically equivalent of multiple L provided that for every ε > 0 limr1hrkIr:xσk(m)yσk(m)-L=0 uniformly in m = 1, 2, 3, ..., (denoted by x Sσ,θ y) simply S σ,8-asymptotically equivalent, if L = 1. Using this definition we shall prove S σ,8-asymptotically equivalent analogues of Fridy and Orhan’s theorems in [5] and analogues results of Das and Patel in [1] shall also be presented.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269459
@article{bwmeta1.element.doi-10_2478_s11533-006-0031-8,
     author = {Ekrem Sava\c s and Richard Patterson},
     title = {$\sigma$-asymptotically lacunary statistical equivalent sequences},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {648-655},
     zbl = {1109.40002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0031-8}
}
Ekrem Savaş; Richard Patterson. σ-asymptotically lacunary statistical equivalent sequences. Open Mathematics, Tome 4 (2006) pp. 648-655. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0031-8/

[1] G. Das and B.K. Patel: “Lacunary distribution of sequences”, Indian J. Pure Appl. Math., Vol. 26(1), (1989), pp. 54–74. | Zbl 0726.40002

[2] H. Fast: “Sur la convergence statistique”, Collog. Math., Vol. 2, (1951), pp. 241–244. | Zbl 0044.33605

[3] J.A. Fridy: “Minimal rates of summability”, Can. J. Math., Vol. 30(4), (1978), pp. 808–816. | Zbl 0359.40003

[4] J.A. Fridy: “On statistical sonvergence”, Analysis, Vol. 5, (1985), pp. 301–313. | Zbl 0588.40001

[5] J.A. Fridy and C. Orhan: “Lacunary statistical sonvergent”, Pacific J. Math., Vol. 160(1), (1993), pp. 43–51. | Zbl 0794.60012

[6] G.G. Lorentz: “A contribution to the theory of divergent sequences”, Acta. Math., Vol. 80, (1948), pp. 167–190. http://dx.doi.org/10.1007/BF02393648 | Zbl 0031.29501

[7] Mursaleen: “Some new spaces of lacunary sequences and invariant means”, Ital. J. Pure Appl. Math., Vol. 11, (2002), pp. 175–181. | Zbl 1104.46003

[8] Mursaleen: “New invariant matrix methods of summability”, Quart. J. Math. Oxford, Vol. 34(2), (1983), pp. 133, 77–86.

[9] M. Marouf: “Asymptotic equivalence and summability”, Int. J. Math. Math. Sci., Vol. 16(4), (1993), pp. 755–762. http://dx.doi.org/10.1155/S0161171293000948 | Zbl 0788.40001

[10] R.F. Patterson: “On asymptotically statistically equivalent sequences”, Demonstratio Math., Vol. 36(1), (2003), pp. 149–153. | Zbl 1045.40003

[11] R.F. Patterson and E. Savaş: “On asymptotically lacunary statistically equivalent sequences”, (in press). | Zbl 1155.40301

[12] P. Schaefer: “Infinite matrices and invariant means”, Proc. Amer. Math. Soc., Vol. 36, (1972), pp. 104–110. http://dx.doi.org/10.2307/2039044 | Zbl 0255.40003