An existence result for an interior electromagnetic casting problem
Mohammed Barkatou ; Diaraf Seck ; Idrissa Ly
Open Mathematics, Tome 4 (2006), p. 573-584 / Harvested from The Polish Digital Mathematics Library

This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269789
@article{bwmeta1.element.doi-10_2478_s11533-006-0026-5,
     author = {Mohammed Barkatou and Diaraf Seck and Idrissa Ly},
     title = {An existence result for an interior electromagnetic casting problem},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {573-584},
     zbl = {1111.35129},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0026-5}
}
Mohammed Barkatou; Diaraf Seck; Idrissa Ly. An existence result for an interior electromagnetic casting problem. Open Mathematics, Tome 4 (2006) pp. 573-584. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0026-5/

[1] M. Barkatou: “Sufficient condition of existence for a free boundary problem for the p-Laplacian”, Ann. Sci. Math. Québec, Vol. 26(2), (2002), pp. 123–132. | Zbl 1054.35141

[2] M. Barkatou: D. Seck and I. Ly: “An existence result for a quadrature surface free boundary problem”, Centr. Eur. J. Math., Vol. 3(1), (2005), pp. 39–57, to appear. http://dx.doi.org/10.2478/BF02475654 | Zbl 1207.35106

[3] M. Barkatou:: Some geometric properties for a class of non Lipschitz-domains, New York J. of Math, Vol. 8, (2002), pp. 189–213. | Zbl 1066.35028

[4] D. Bucur and P. Trebeschi: “Shape Optimization Problems Governed by Nonlinear State Equations”, Proc. Roy. Sc. Edinburgh, Vol. 128A, (1998), (1998), pp. 945–963 | Zbl 0918.49030

[5] D. Chenais: “On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl., Vol. 52, (1975), pp. 189–289. http://dx.doi.org/10.1016/0022-247X(75)90091-8

[6] R. Dautray and J.L. Lions: Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. I et II, Masson, Paris, 1984.

[7] J. Decloux: On the two-Dimensional Magnetic Shaping Problem Without Surface tension, Ecole Polytechnique Fédérale de Lausanne, Suisse, 1990.

[8] E. Dibenedetto:: “C 1+α local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Analysis., Vol. 7, (1983), pp. 827–850. http://dx.doi.org/10.1016/0362-546X(83)90061-5

[9] D. Gilbarg and N.S. Trudinger: Elliptic partial equations of second order, Springer-Verlag, 1983. | Zbl 0562.35001

[10] M. Hayouni and A. Novruzi: “Sufficient condition for existence of solution of a free boundary problem”, Quart. Appl. Math., to appear. | Zbl 1054.35146

[11] A. Henrot: “Continuity with respect to the domain for the laplacian: a survey”, Control and Cybernetics, Vol. 23(3), (1994), pp. 427–443. | Zbl 0822.35029

[12] A. Henrot and M. Pierre: “About Critical Points of The Energy in an Electromagnetic Shaping Problem”, In: J.P. Zolésio (Ed): Lecture Notes in Control and Information Sciences, Boundary Control and Boundary Variation, Vol. 178, Sophia Antipolis, 1991, pp. 238–252 | Zbl 0820.35139

[13] A. Henrot and M. Pierre: “About Existence of Equilibrium in Electromagnetic Casting”, Quater. Appl. Math., Vol. XLIX, (1991), pp. 563–575. | Zbl 0731.76092

[14] M.V. Keldyš: “On the solvability and the stability of the Dirichlet problem”, Amer. Math. Soc. Trans., Vol. 2–51, (1966), pp. 1–73.

[15] J.L. Lewis: Regularity of the derivatives of solutions to certain degenerate elliptic equations., Indiana Univ. Math. J., Vol. 32, (1983), pp. 849–858. http://dx.doi.org/10.1512/iumj.1983.32.32058

[16] G.M. Lieberman: “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., Vol. 12, (1988) pp. 1203–1219. http://dx.doi.org/10.1016/0362-546X(88)90053-3

[17] F. Murat and J. Simon: “Quelques résultats sur le contrôle par un domaine géométrique”, Publ. du labo. d’Anal. Num., Paris VI, (1974) pp. 1–46.

[18] A. Novruzi: Contribution en optimisation de formes et Applications, Thesis(PhD), Université Henri Poincaré Nancy, 1997.

[19] J. Sokolowski and J.P. Zolesio: Introduction to shape optimization: shape sensitity analysis, Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin, 1992.

[20] P. Tolksdorf: “On the Dirichlet problem for quasilinear equations in domains with conical boundary points”, Comm. Partial Differential Equations, Vol. 8(7), (1983), pp. 773–817. | Zbl 0515.35024