Priestley dualities for some lattice-ordered algebraic structures, including MTL, IMTL and MV-algebras
Leonardo Cabrer ; Sergio Celani
Open Mathematics, Tome 4 (2006), p. 600-623 / Harvested from The Polish Digital Mathematics Library

In this work we give a duality for many classes of lattice ordered algebras, as Integral Commutative Distributive Residuated Lattices MTL-algebras, IMTL-algebras and MV-algebras (see page 604). These dualities are obtained by restricting the duality given by the second author for DLFI-algebras by means of Priestley spaces with ternary relations (see [2]). We translate the equations that define some known subvarieties of DLFI-algebras to relational conditions in the associated DLFI-space.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269542
@article{bwmeta1.element.doi-10_2478_s11533-006-0025-6,
     author = {Leonardo Cabrer and Sergio Celani},
     title = {Priestley dualities for some lattice-ordered algebraic structures, including MTL, IMTL and MV-algebras},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {600-623},
     zbl = {1114.06010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0025-6}
}
Leonardo Cabrer; Sergio Celani. Priestley dualities for some lattice-ordered algebraic structures, including MTL, IMTL and MV-algebras. Open Mathematics, Tome 4 (2006) pp. 600-623. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0025-6/

[1] R. Dwinger and P.H. Balbes: Distributive Lattices, University of Missouri Press, Columbia, M, 1974.

[2] S.A. Celani: “Distributive lattices with fusion and implication”, Southeast Asian Bull. Math., Vol. 28, (2004), pp. 999–1010. | Zbl 1065.03050

[3] S.A. Celani and R. Jansana: “Bounded Distributive lattices with Strict Implication”, Math. Log. Quart., Vol. 51(3), (2005), pp. 219–246. http://dx.doi.org/10.1002/malq.200410022 | Zbl 1067.03065

[4] R. Cignoli, I.M.L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Vol. 7, Kluwer Academic Publishers, 2000.

[5] R. Cignoli, F. Esteba, L. Godo and F. Montagna: “On a class of left continuous t-norms”, Fuzzy Set. Syst., Vol. 131, (2002), pp. 283–296. http://dx.doi.org/10.1016/S0165-0114(01)00215-9 | Zbl 1012.03032

[6] F. Esteba and L. Godo: “Monoidal t-norm based logic: towards a logic for left continuous t-norms”, Fuzzy Set. Syst., Vol. 124, (2001), pp. 271–288. http://dx.doi.org/10.1016/S0165-0114(01)00098-7 | Zbl 0994.03017

[7] M. Gehrke and H.A. Priestley: “Non-canonicity of MV-algebras”, Houston J. Math., Vol. 28(3), (2002), pp. 449–455. | Zbl 1060.06019

[8] J.B. Hart, L. Rafter and C. Tsinakis: “The Structure of Commutative Residuated Lattices”, Int. J. Algebr. Comput., Vol. 12(4), (2002), pp. 509–524. http://dx.doi.org/10.1142/S0218196702001048 | Zbl 1011.06006

[9] P. Jipsen and C. Tsinakis: A Survey of Residuated Lattices, Ordered Algebraic Structures, Kluwer Academic Publishers, Dordrecht, 2002, pp. 19–56.

[10] N.G. Martinez: “A topological duality for some lattice oredered algebraic structures including l-groups”, Algebra Univ., Vol. 31, (1996), pp. 516–541. http://dx.doi.org/10.1007/BF01236503

[11] N.G. Martinez: “A simplified duality for implicative lattces and l-groups”, Studia Log., Vol. 56, (1994), pp. 185–204. http://dx.doi.org/10.1007/BF00370146

[12] N.G. Martinez and H.A. Priestley: “On Priestley spaces of lattice-ordered algebraic structures”, Order, Vol. 15 (1998), pp. 297–323. http://dx.doi.org/10.1023/A:1006224930256 | Zbl 0941.06012

[13] H.A. Priestley: “Ordered topological spaces and the representation of distributive lattices”, Proc. London Math. Soc., Vol. 24, (1972), pp. 507–530. | Zbl 0323.06011

[14] H.A. Priestley: “Stone Lattices: a topological approach”, Fund. Math., Vol. 84, (1974), pp. 127–143. | Zbl 0323.06012

[15] V. Sofronie-Stokkermans: “Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics I”, Studia Log., Vol. 64, (2000), pp. 93–132. http://dx.doi.org/10.1023/A:1005298632302

[16] V. Sofronie-Stokkermans: “Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics II”, Studia Log., Vol. 64, (2000), pp. 151–192. http://dx.doi.org/10.1023/A:1005228629540

[17] V. Sofronie-Stokkermans: “Resolution-based decision procedures for the universal theory of some classes of distributive lattices with operators”, J. Symb. Comput., Vol. 36, (2003), pp. 891–924. http://dx.doi.org/10.1016/S0747-7171(03)00069-5 | Zbl 1043.03013

[18] A. Urquhart: “Duality for Algebras of Relevant Logics”, Studia Log., Vol. 56, (1996), pp. 263–276. http://dx.doi.org/10.1007/BF00370149 | Zbl 0844.03032

[19] M. Ward and R.P. Dilworth: “Residuated lattices”, Trans. Amer. Math. Soc., Vol. 45, (1939), pp. 335–354. http://dx.doi.org/10.2307/1990008 | Zbl 0021.10801