On the dynamics of equations with infinite delay
Dalibor Pražák
Open Mathematics, Tome 4 (2006), p. 635-647 / Harvested from The Polish Digital Mathematics Library

We consider a system of ordinary differential equations with infinite delay. We study large time dynamics in the phase space of functions with an exponentially decaying weight. The existence of an exponential attractor is proved under the abstract assumption that the right-hand side is Lipschitz continuous. The dimension of the attractor is explicitly estimated.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269018
@article{bwmeta1.element.doi-10_2478_s11533-006-0024-7,
     author = {Dalibor Pra\v z\'ak},
     title = {On the dynamics of equations with infinite delay},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {635-647},
     zbl = {1107.37062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0024-7}
}
Dalibor Pražák. On the dynamics of equations with infinite delay. Open Mathematics, Tome 4 (2006) pp. 635-647. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0024-7/

[1] V.V. Chepyzhov, S. Gatti, M. Grasselli, A. Miranville and V. Pata: “Trajectory and global attractors for evolution equations with memory”, Appl. Math. Lett., Vol. 19(1), (2006), pp. 87–96. http://dx.doi.org/10.1016/j.aml.2005.03.007 | Zbl 1082.35035

[2] V.V. Chepyzhov and A. Miranville: “On trajectory and global attractors for semilinear heat equations with fading memory”, Indiana Univ. Math. J., Vol. 55(1), (2006), pp. 119–167. http://dx.doi.org/10.1512/iumj.2006.55.2597 | Zbl 1186.37092

[3] I. Chueshov and I. Lasiecka: “Attractors for second-order evolution equations with a nonlinear damping”, J. Dynam. Differential Equations, Vol. 16(2), (2004), pp. 469–512. http://dx.doi.org/10.1007/s10884-004-4289-x | Zbl 1072.37054

[4] C.M. Dafermos: “Asymptotic stability in viscoelasticity”, Arch. Rational Mech. Anal., Vol. 37, (1970), pp. 297–308. http://dx.doi.org/10.1007/BF00251609

[5] A. Debussche and R. Temam: “Some new generalizations of inertial manifolds”, Discrete Contin. Dynam. Systems, Vol. 2(4), (1996), pp. 543–558. | Zbl 0948.35018

[6] A. Eden, C. Foias, B. Nicolaenko and R. Temam: Exponential attractors for dissipative evolution equations, Vol. 37 of RAM: Research in Applied Mathematics, Masson, Paris, 1994. | Zbl 0842.58056

[7] S. Gatti, M. Grasselli, A. Miranville and V. Pata: “Memory relaxation of first order evolution equations”, Nonlinearity, Vol. 18(4), (2005), pp. 1859–1883. http://dx.doi.org/10.1088/0951-7715/18/4/023 | Zbl 1181.35026

[8] S. Gatti, M. Grasselli, A. Miranville and V. Pata: “A construction of a robust family of exponential attractors,” Proc. Amer. Math. Soc., Vol. 134(1), (2006), pp. 117–127 (electronic). http://dx.doi.org/10.1090/S0002-9939-05-08340-1 | Zbl 1078.37047

[9] J.K. Hale and G. Raugel: “Regularity, determining modes and Galerkin methods”, J. Math. Pures Appl. (9), Vol. 82(9), (2003), pp. 1075–1136. | Zbl 1043.35048

[10] J. Málek and J. Nečas: “A finite-dimensional attractor for three-dimensional flow of incompressible fluids”, J. Differ. Equations, Vol. 127(2), (1996), pp. 498–518. http://dx.doi.org/10.1006/jdeq.1996.0080 | Zbl 0851.35107

[11] D. Pražák: “A necessary and sufficient condition for the existence of an exponential attractor” Cent. Eur. J. Math., Vol. 1(3), (2003), pp. 411–417. http://dx.doi.org/10.2478/BF02475219 | Zbl 1030.37053

[12] D. Pražák: “On the dimension of the attractor for the wave equation with nonlinear damping”, Commun. Pure Appl. Anal., Vol. 4(1), (2005), pp. 165–174. http://dx.doi.org/10.3934/cpaa.2005.4.165 | Zbl 1070.37057

[13] D. Pražák: “On reducing the 2d Navier-Stokes equations to a system of delayed ODEs”, In: Nonlinear elliptic and parabolic problems, Vol. 64 of Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 2005, pp. 403–411. | Zbl 1095.35030

[14] R. Temam: Infinite-dimensional dynamical systems in mechanics and physics, Vol. 68 of Applied Mathematical Sciences, 2nd ed., Springer-Verlag, New York, 1997. | Zbl 0871.35001