In this paper we give a term equivalence between the simple k-cyclic Post algebra of order p, L p,k, and the finite field F(p k) with constants F(p). By using Lagrange polynomials, we give an explicit procedure to obtain an interpretation Φ1 of the variety V(L p,k) generated by L p,k into the variety V(F(p k)) generated by F(p k) and an interpretation Φ2 of V(F(p k)) into V(L p,k) such that Φ2Φ1(B) = B for every B ε V(L p,k) and Φ1Φ2(R) = R for every R ε V(F(p k)).
@article{bwmeta1.element.doi-10_2478_s11533-006-0023-8, author = {Abad Manuel and D\'\i az Varela J. and L\'opez Martinolich B. and C. Vannicola M. and Zander M.}, title = {An equivalence between varieties of cyclic Post algebras and varieties generated by a finite field}, journal = {Open Mathematics}, volume = {4}, year = {2006}, pages = {547-561}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0023-8} }
Abad Manuel; Díaz Varela J.; López Martinolich B.; C. Vannicola M.; Zander M. An equivalence between varieties of cyclic Post algebras and varieties generated by a finite field. Open Mathematics, Tome 4 (2006) pp. 547-561. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0023-8/
[00000] [1] M. Abad: “Cyclic Post algebras of order n”, An. Acad. Brasil. Ciênc., Vol. 53(2), (1981), pp. 243–246.
[00001] [2] R. Balbes and P. Dwinger: Distributive Lattices, University of Missouri Press, Columbia, MO., 1974.
[00002] [3] V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu: Lukasiewicz-Moisil Algebras, Annals of Discrete Mathematics, Vol. 49, North-Holland, Amsterdam, 1991.
[00003] [4] S. Burris and H. Sankappanavar: A Course in Universal Algebra, Graduate Texts in Mathematics, Vol 78, Springer, Berlin, 1981.
[00004] [5] H. Cendra: “Cyclic Boolean algebras and Galois fields F(2k)”, Portugal. Math., Vol. 39(1–4), (1980), pp. 435–440.
[00005] [6] G. Epstein: “The lattice theory of Post algebras”, Trans. Amer. Math. Soc., Vol. 95, (1960), pp. 300–317. http://dx.doi.org/10.2307/1993293
[00006] [7] K. Kaarly and A.F. Pixley: Polynomial Completeness in Algebraic Systems, Chapman and Hall, Boca Raton, 2001.
[00007] [8] S. Lang: Algebra, Addison-Wesley Publishing Company, CA., 1984.
[00008] [9] R. Lewin: “Interpretability into Łukasiewicz algebras”, Rev. Un. Mat. Argentina, Vol. 41(3), (1999), pp. 81–98.
[00009] [10] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties, Vol. I, Wadsworth and Brooks, Monterey, CA, 1987.
[00010] [11] A. Monteiro: “Algèbres de Boole cycliques”, Rev. Roumaine de Mathématiques Pures Appl., Vol. 23(1), (1978), pp. 71–76.
[00011] [12] G. Moisil: Algebra schemelor cu elemente ventil, Seria St. nat. 4–5, Revista Universitatii C.I. Parhon, Bucharest, 1954, pp. 9–15.
[00012] [13] G. Moisil: “Algèbres universelles et automates”, In: Essais sur les Logiques non Chrysippiennes, Editions de L’Academie de la Republique Socialiste de Roumanie, Bucharest, 1972.
[00013] [14] S. Rudeanu: Boolean functions and equations, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974.
[00014] [15] M. Serfati: “Introduction aux Algèbres de Post et à leurs applications (logiques à r valeurs-équations postiennes-graphoïdes orientés)”, Cahiers du Bureau Universitaire de Recherche Opérationnelle Université Paris VI. Série Recherche, Vol. 21, (1973), pp. 35–42.