On presentations of Brauer-type monoids
Ganna Kudryavtseva ; Volodymyr Mazorchuk
Open Mathematics, Tome 4 (2006), p. 413-434 / Harvested from The Polish Digital Mathematics Library

We obtain presentations for the Brauer monoid, the partial analogue of the Brauer monoid, and for the greatest factorizable inverse submonoid of the dual symmetric inverse monoid. In all three cases we apply the same approach, based on the realization of all these monoids as Brauer-type monoids.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269652
@article{bwmeta1.element.doi-10_2478_s11533-006-0017-6,
     author = {Ganna Kudryavtseva and Volodymyr Mazorchuk},
     title = {On presentations of Brauer-type monoids},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {413-434},
     zbl = {1130.20041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0017-6}
}
Ganna Kudryavtseva; Volodymyr Mazorchuk. On presentations of Brauer-type monoids. Open Mathematics, Tome 4 (2006) pp. 413-434. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0017-6/

[1] J. Baez: “Link invariants of finite type and perturbation theory”, Lett. Math. Phys., Vol. 26(1), (1992), pp. 43–51. http://dx.doi.org/10.1007/BF00420517 | Zbl 0792.57002

[2] H. Barcelo and A. Ram: Combinatorial representation theory. New perspectives in algebraic combinatorics, Berkeley, CA, 1996–97, pp. 23–90.

[3] J. Birman: “New points of view in knot theory”, Bull. Amer. Math. Soc. (N.S.), Vol. 28(2), (1993), pp. 253–287. | Zbl 0785.57001

[4] J. Birman and H. Wenzl: “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., Vol. 313(1), (1989), pp. 249–273. http://dx.doi.org/10.2307/2001074 | Zbl 0684.57004

[5] M. Bloss: “The partition algebra as a centralizer algebra of the alternating group”, Comm. Algebra, Vol. 33(7), (2005), pp. 2219–2229. http://dx.doi.org/10.1081/AGB-200063579 | Zbl 1110.20012

[6] R. Brauer: “On algebras which are connected with the semisimple continuous groups”, Ann. of Math. (2), Vol. 38(4), (1937), pp. 857–872. http://dx.doi.org/10.2307/1968843 | Zbl 0017.39105

[7] D. FitzGerald: “A presentation for the monoid of uniform block permutations”, Bull. Aus. Math. Soc., Vol. 68, (2003), pp. 317–324. | Zbl 1043.20037

[8] D. FitzGerald and J. Leech: “Dual symmetric inverse monoids and representation theory”, J. Austral. Math. Soc. Ser. A, Vol. 64(3), (1998), pp. 345–367. http://dx.doi.org/10.1017/S1446788700039227 | Zbl 0927.20040

[9] T. Halverson and A. Ram: “Partition algebras”, European J. Comb., Vol. 26, (2005), pp. 869–921. http://dx.doi.org/10.1016/j.ejc.2004.06.005 | Zbl 1112.20010

[10] V.F.R. Jones: The Potts model and the symmetric group. Subfactors (Kyuzeso, 1993), World Sci. Publishing, River Edge, NJ, 1994, pp. 259–267. | Zbl 0938.20505

[11] S. Kerov: “Realizations of representations of the Brauer semigroup”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Vol. 164, (1987); Differentsialnaya Geom. Gruppy Li i Mekh., Vol. IX, pp. 188–193, 199; translation in J. Soviet Math., Vol. 47(2), (1989), pp. 2503–2507.

[12] S. Lipscomb: Symmetric inverse semigroups. Mathematical Surveys and Monographs, Vol. 46, American Mathematical Society, Providence, RI, 1996. | Zbl 0857.20047

[13] V. Maltcev: “Systems of generators, ideals and the principal series of the Brauer semigroup”, Proceedings of Kyiv University, Physical and Mathematical Sciences, Vol. 2, (2004), pp. 59–65. | Zbl 1069.14023

[14] V. Maltcev: “On one inverse subsemigroups of the semigroup ℭn”, to appear in Proceedings of Kyiv University.

[15] V. Maltcev: On inverse partition semigroups IP x, preprint, Kyiv University, Kyiv, Ukraine, 2005.

[16] P. Martin: “Temperley-Lieb algebras for nonplanar statistical mechanics - the partition algebra construction”, J. Knot Theory Ramifications, Vol. 3(1), (1994), pp. 51–82. http://dx.doi.org/10.1142/S0218216594000071 | Zbl 0804.16002

[17] P. Martin: “The structure of the partition algebras”, J. Algebra, Vol. 183(2), (1996), pp. 319–358. http://dx.doi.org/10.1006/jabr.1996.0223

[18] P. Martin and A. Elgamal: “Ramified partition algebras”, Math. Z., Vol. 246(3), (2004), pp. 473–500. http://dx.doi.org/10.1007/s00209-003-0581-4 | Zbl 1091.16010

[19] P. Martin and D. Woodcock: “On central idempotents in the partition algebra”, J. Algebra, Vol. 217(1), (1999), pp. 156–169. http://dx.doi.org/10.1006/jabr.1998.7754

[20] V. Mazorchuk: “On the structure of Brauer semigroup and its partial analogue”, Problems in Algebra, Vol. 13, (1998), pp. 29–45.

[21] V. Mazorchuk: “Endomorphisms of B n, PB n, and ℭn”, Comm. Algebra, Vol. 30(7), (2002), pp. 3489–3513. http://dx.doi.org/10.1081/AGB-120004500 | Zbl 1008.20056

[22] M. Parvathi: “Signed partition algebras”, Comm. Algebra, Vol. 32(5), (2004), pp. 1865–1880. http://dx.doi.org/10.1081/AGB-120029909 | Zbl 1081.20008

[23] A. Vernitski: “A generalization of symmetric inverse semigroups”, preprint 2005.

[24] Ch. Xi: “Partition algebras are cellular”, Compositio Math., Vol. 119(1), (1999), pp. 99–109. http://dx.doi.org/10.1023/A:1001776125173