It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.
@article{bwmeta1.element.doi-10_2478_s11533-006-0015-8, author = {Matthias Schork}, title = {Duality triads of higher rank: Further properties and some examples}, journal = {Open Mathematics}, volume = {4}, year = {2006}, pages = {507-524}, zbl = {1152.11003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0015-8} }
Matthias Schork. Duality triads of higher rank: Further properties and some examples. Open Mathematics, Tome 4 (2006) pp. 507-524. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0015-8/
[1] G.E. Andrews: The Theory of Partitions, Addison Wesley, Reading, 1976.
[2] P. Blasiak, K.A. Penson and A.I. Solomon: “The Boson Normal Ordering Problem and Generalized Bell Numbers”, Ann. Comb., Vol. 7, (2003), pp. 127–139. http://dx.doi.org/10.1007/s00026-003-0177-z | Zbl 1030.81004
[3] P. Blasiak, K.A. Penson and A.I. Solomon: “The general boson normal ordering problem”, Phys. Lett. A, Vol. 309, (2003), pp. 198–205. http://dx.doi.org/10.1016/S0375-9601(03)00194-4 | Zbl 1009.81026
[4] E. Borak: “A note on special duality triads and their operator valued counterparts”, Preprint arXiv:math.CO/0411041. | Zbl 1188.05026
[5] T.S. Chihara: An Introduction to Orthogonal Polynomials, Gordon & Breach, New York, 1978.
[6] L. Comtet: Advanced Combinatorics, Reidel, Dordrecht, 1974.
[7] A.J. Duran and W. Van Assche: “Orthogonal matrix polynomials and higher order recurrence relations”, Linear Algebra Appl., Vol. 219, (1995), pp. 261–280. http://dx.doi.org/10.1016/0024-3795(93)00218-O | Zbl 0827.15027
[8] P. Feinsilver and R. Schott: Algebraic structures and operator calculus. Vol. II: Special functions and computer science, Kluwer Academic Publishers, Dordrecht, 1994. | Zbl 1128.33300
[9] I. Jaroszewski and A.K. Kwaśniewski: “On the principal recurrence of data structures organization and orthogonal polynomials”, Integral Transforms Spec. Funct., Vol. 11, (2001), pp. 1–12. | Zbl 0982.68049
[10] A.K. Kwaśniewski: “On duality triads”, Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42 (2003), pp. 11–25. | Zbl 1152.11306
[11] A.K. Kwaśniewski: “On Fibonomial and other triangles versus duality triads”, Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42, (2003), pp. 27–37. | Zbl 1152.11307
[12] A.K. Kwaśniewski: “Fibonomial Cumulative Connection Constants”, Bulletin of the ICA, Vol. 44, (2005), pp. 81–92. | Zbl 1075.11010
[13] A.K. Kwaśniewski: “On umbral extensions of Stirling numbers and Dobinski-like formulas”, Adv. Stud. Contemp. Math., Vol. 12, (2006), pp. 73–100. | Zbl 1086.05015
[14] F. Marcellán and A. Ronveaux: “On a class of polynomials orthogonal with respect to a discrete Sobolev inner product”, Indag. Math., Vol. 1, (1990), pp. 451–464. http://dx.doi.org/10.1016/0019-3577(90)90013-D | Zbl 0732.42016
[15] F. Marcellán and G. Sansigre: “On a Class of Matrix Orthogonal Polynomials on the Real Line”, Linear Algebra Appl., Vol. 181, (1993), pp. 97–109. http://dx.doi.org/10.1016/0024-3795(93)90026-K | Zbl 0769.15010
[16] J. Riordan: Combinatorial Identities, Wiley, New York, 1968.
[17] M. Schork: “On the combinatorics of normal-ordering bosonic operators and deformations of it”, J. Phys. A: Math. Gen., Vol. 36, (2003), pp. 4651–4665. http://dx.doi.org/10.1088/0305-4470/36/16/314
[18] M. Schork: “Some remarks on duality triads”, Adv. Stud. Contemp. Math., Vol. 12, (2006), pp. 101–110. | Zbl 1102.11010
[19] M. Schork: “On a generalization of duality triads”, Cent. Eur. J. Math., Vol. 4(2), (2006), pp. 304–318. http://dx.doi.org/10.2478/s11533-006-0008-7 | Zbl 1099.05008
[20] A. Sinap and W. Van Assche: “Orthogonal matrix polynomials and applications”, J. Comput. Appl. Math., Vol. 66, (1996), pp. 27–52. http://dx.doi.org/10.1016/0377-0427(95)00193-X | Zbl 0863.42018
[21] R.P. Stanley: Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999. | Zbl 0928.05001
[22] G. Szegö: Orthogonal Polynomials, American Mathematical Society, 1948.
[23] V. Totik: “Orthogonal Polynomials”, Surv. Approximation Theory, Vol. 1, (2005), pp. 70–125. | Zbl 1105.42017