The set of toric minimal log discrepancies
Florin Ambro
Open Mathematics, Tome 4 (2006), p. 358-370 / Harvested from The Polish Digital Mathematics Library

We describe the set of minimal log discrepancies of toric log varieties, and study its accumulation points.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269461
@article{bwmeta1.element.doi-10_2478_s11533-006-0013-x,
     author = {Florin Ambro},
     title = {The set of toric minimal log discrepancies},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {358-370},
     zbl = {1129.14070},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0013-x}
}
Florin Ambro. The set of toric minimal log discrepancies. Open Mathematics, Tome 4 (2006) pp. 358-370. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0013-x/

[1] V. Alexeev: “Two two-dimensional terminations”, Duke Math. J., Vol. 69(3), (1993), pp. 527–545. http://dx.doi.org/10.1215/S0012-7094-93-06922-0 | Zbl 0791.14006

[2] F. Ambro: “On minimal log discrepancies”, Math. Res. Lett., Vol. 6(5–6), (1999), pp. 573–580. | Zbl 0974.14007

[3] A. Borisov: “Minimal discrepancies of toric singularities”, Manuscripta Math., Vol. 92(1), (1997), pp. 33–45. | Zbl 0873.14003

[4] A. Borisov: “On classification of toric singularities”, Algebraic geom., Vol. 9; J. Math. Sci. (New York), Vol. 94(1), (1999), pp. 1111–1113. | Zbl 0934.14035

[5] J.W.S. Cassels: An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 45, Cambridge University Press, New York, 1957.

[6] J. Lawrence: Finite unions of closed subgroups of the n-dimensional torus, Applied geometry and discrete mathematics, 433–441, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991. | Zbl 0738.52016

[7] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988. | Zbl 0628.52002

[8] V.V. Shokurov: Problems about Fano varieties, Birational Geometry of Algebraic Varieties, Open Problems-Katata, 1988, pp. 30–32.

[9] V.V. Shokurov: A.c.c. in codimension 2, preprint 1993.

[10] V.V. Shokurov: “Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips”, Tr. Mat. Inst. Steklova (Russian), Vol. 246 (2004); Algebr. Geom. Metody, Svyazi i Prilozh., pp. 328-351; translation in: Proc. Steklov Inst. Math., Vol. 3(246), 2004, pp. 315–336. | Zbl 1107.14012