Remarks on affine complete distributive lattices
Dominic Zypen
Open Mathematics, Tome 4 (2006), p. 525-530 / Harvested from The Polish Digital Mathematics Library

We characterise the Priestley spaces corresponding to affine complete bounded distributive lattices. Moreover we prove that the class of affine complete bounded distributive lattices is closed under products and free products. We show that every (not necessarily bounded) distributive lattice can be embedded in an affine complete one and that ℚ ∩ [0, 1] is initial in the class of affine complete lattices.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269587
@article{bwmeta1.element.doi-10_2478_s11533-006-0012-y,
     author = {Dominic Zypen},
     title = {Remarks on affine complete distributive lattices},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {525-530},
     zbl = {1124.06003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0012-y}
}
Dominic Zypen. Remarks on affine complete distributive lattices. Open Mathematics, Tome 4 (2006) pp. 525-530. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0012-y/

[1] B.A. Davey and H.A. Priestley: Lattices and Order, Cambridge University Press, 1990.

[2] G. Grätzer: “Boolean functions on distributive lattices”, Acta Math. Acad. Sci. Hung., Vol. 15, (1964), pp. 195–201. http://dx.doi.org/10.1007/BF01897037 | Zbl 0146.01902

[3] S. MacLane: Categories for the working mathematician, 2nd ed., Springer Verlag, (1998). | Zbl 0705.18001

[4] M. Ploščica: “Affine Complete Distributive Lattices”, Order, Vol. 11, (1994), pp. 385–390. http://dx.doi.org/10.1007/BF01108769 | Zbl 0816.06010

[5] H.A. Priestley: “Representation of distributive lattices by means of ordered Stone spaces”, Bull. London Math. Soc., Vol. 2, (1970), pp. 186–190. | Zbl 0201.01802

[6] H.A. Priestley: “Ordered topological spaces and the representation of distributive lattices”, Proc. London Math. Soc., Vol. 3(24), (1972), pp. 507–530. | Zbl 0323.06011

[7] D. van der Zypen: Aspects of Priestley Duality, Thesis (PhD), University of Bern, 2004.