Let be an algebraically closed field. Consider a finite dimensional monomial relations algebra of finite global dimension, where Γ is a quiver and I an admissible ideal generated by a set of paths from the path algebra . There are many modules over Λ which may be represented graphically by a tree with respect to a top element, of which the indecomposable projectives are the most natural example. These trees possess branches which correspond to right subpaths of cycles in the quiver. A pattern in the syzygies of a specific factor module of the corresponding indecomposable projective module is found, allowing us to conclude that the square of any cycle must lie in the ideal I.
@article{bwmeta1.element.doi-10_2478_s11533-006-0010-0, author = {Brian Jue}, title = {Squared cycles in monomial relations algebras}, journal = {Open Mathematics}, volume = {4}, year = {2006}, pages = {250-259}, zbl = {1108.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0010-0} }
Brian Jue. Squared cycles in monomial relations algebras. Open Mathematics, Tome 4 (2006) pp. 250-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0010-0/
[1] D. Anick and E. Green: “On the homology of quotients of path algebras”, Comm. Algebra, Vol. 15(1,2), (1987), pp. 309–341. | Zbl 0608.16029
[2] M. Auslander, I. Reiten and S. Smalø: Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995.
[3] K. Bongartz and B. Huisgen-Zimmermann: “The geometry of uniserial representations of algebras II. Alternate viewpoints and uniqueness”, J. Pure Appl. Algebra, Vol. 157, (2001), pp. 23–32. http://dx.doi.org/10.1016/S0022-4049(00)00031-1 | Zbl 0982.16010
[4] K. Bongartz and B. Huisgen-Zimmermann: “Varieties of uniserial representations IV. Kinship to geometric quotients”, Trans. Am. Math. Soc., Vol. 353, (2001), pp. 2091–2113. http://dx.doi.org/10.1090/S0002-9947-01-02712-X | Zbl 1005.16012
[5] W. D. Burgess: “The graded Cartan matrix and global dimension of 0-relations Algebras”, Proc. Edinburgh Math. Soc., Vol. 30(3), (1987), pp. 351–362. | Zbl 0608.16028
[6] P. Gabriel: Auslander-Reiten seuquence and representation-finite algebras, Lect. Notes Math. 831, Springer-Verlag, New York, 1980, pp. 1–71.
[7] E. Green, D. Happel and D. Zacharia: “Projective resolutions over Artin algebras with zero relations”, Illnois J. Math., Vol. 29(1), (1985), pp. 180–190. | Zbl 0551.16008
[8] B. Huisgen-Zimmermann: “The geometry of uniserial representations of finite dimensional algebras I”, J. Pure Appl. Algebra, Vol. 127, (1988), pp. 39–72.
[9] B. Huisgen-Zimmermann: “The geometry of uniserial representations of finite dimensional algebras III”, Trans. Am. Math. Soc., Vol. 348(12), (1996), pp. 4775–4812. http://dx.doi.org/10.1090/S0002-9947-96-01575-9 | Zbl 0862.16008
[10] B. Huisgen-Zimmermann: “Predicting syzygies of monomial relations algebras”, Manuscr. Math., Vol. 70, (1991), pp. 157–182. | Zbl 0723.16003
[11] K. Igusa: “Notes on the no loops conjecture”, J. Pure Appl. Algebra, Vol. 69, (1990), pp. 161–176. http://dx.doi.org/10.1016/0022-4049(90)90040-O
[12] B. Jue: The uniserial geometry and homology of finite dimensional algebras, Thesis (Ph.D), University of California, Santa Barbara, 1999.