Subsheaves of the cotangent bundle
Paolo Cascini
Open Mathematics, Tome 4 (2006), p. 209-224 / Harvested from The Polish Digital Mathematics Library

For any smooth projective variety, we study a birational invariant, defined by Campana which depends on the Kodaira dimension of the subsheaves of the cotangent bundle of the variety and its exterior powers. We provide new bounds for a related invariant in any dimension and in particular we show that it is equal to the Kodaira dimension of the variety, in dimension up to 4, if this is not negative.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269475
@article{bwmeta1.element.doi-10_2478_s11533-006-0003-z,
     author = {Paolo Cascini},
     title = {Subsheaves of the cotangent bundle},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {209-224},
     zbl = {1108.14009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0003-z}
}
Paolo Cascini. Subsheaves of the cotangent bundle. Open Mathematics, Tome 4 (2006) pp. 209-224. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0003-z/

[1] F. Bogomolov: “Holomorphic Tensors and Vector Bundles on Projective Varieties”, Math. USSR Izv., Vol. 13, (1979), pp. 499–555. http://dx.doi.org/10.1070/IM1979v013n03ABEH002076 | Zbl 0439.14002

[2] S. Boucksom, J.P. Demailly, M. Paun and T. Peternell: “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, math.AG/0405285. | Zbl 1267.32017

[3] F. Campana: “Réducation d’Albanèse d’un morphisme propre et faiblement kählérien. II. Groupes d’automorphismes relatifs”, Compositio Math., Vol. 54(3), (1985), pp. 399–416. | Zbl 0609.32008

[4] F. Campana: “Connexité rationelle des variétés de Fano”, Ann. Sci. E.N.S., Vol. 25, (1992), pp. 539–545.

[5] F. Campana: “Fundamental Group and Positivity of Cotangent Bundles of Compact Kähler Manifolds”, J. Algebraic Geom., Vol. 4, (1995), pp. 487–502. | Zbl 0845.32027

[6] F. Campana: “Orbifolds, Special Varieties and Classification Theory”, Ann. Inst. Fourier, Grenoble, Vol. 54(3), (2004), pp. 499–630. | Zbl 1062.14014

[7] F. Campana and T. Peternell: “Geometric Stability of the Cotangent Bundle and the Universal Cover of a Projective Manifold”, math.AG/0405093. | Zbl 1218.14030

[8] J.P. Demailly, T. Peternell and M. Schneider: “Pseudo-effective Line Bundles on compact Kähler Manifolds”, Intern. J. Math., Vol. 12(6), (2001), pp. 689–741. | Zbl 1111.32302

[9] T. Ekedahl: T. Ekedahl: “Foliations and inseparable morphisms” (english), In: Algebraic geometry, Proc. Summer Res. Inst., (Brunswick/Maine 1985), Proc. Symp. Pure Math., Vol. 46(2), Amer. Math. Soc., Providence, RI, 1987, pp. 139–149.

[10] T. Graber, J. Harris and J. Starr: “Families of rationally connected varieties”, J. Amer. Math. Soc., Vol. 16, (2003), pp. 57–67. http://dx.doi.org/10.1090/S0894-0347-02-00402-2 | Zbl 1092.14063

[11] P. Griffiths: “Periods of Integrals on Algebraic Manifolds III”, Publ. Math. I.H.E.S., Vol. 38, (1970), pp. 125–180. | Zbl 0212.53503

[12] S. Iitaka: Algebraic Geometry, Graduate Texts in Math., Vol. 76, Springer, 1982. | Zbl 0491.14006

[13] Y. Kawamata: “Characterization of Abelian Varieties”, Comp. Math., Vol. 43, (1981), pp. 253–276. | Zbl 0471.14022

[14] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat: Toroidal Embeddings I, Lectures Notes in Math., Vol. 339, Springer Verlag, 1973. | Zbl 0271.14017

[15] J. Kollár: “Higher Direct Images of Dualizing Sheaves II”, Ann. Math., Vol. 124, (1986), pp. 171–202. | Zbl 0605.14014

[16] J. Kollár: “Nonrational Hypersurfaces”, J. Am. Math. Soc., Vol. 8(1), (1995), pp. 241–249. | Zbl 0839.14031

[17] J. Kollár: Shafarevich maps and automorphic forms, Princeton University Press, 1995. | Zbl 0871.14015

[18] K. Matsuki, Introduction to the Mori program, Springer-Verlag, New York, 2002. | Zbl 0988.14007

[19] Y. Miyaoka: “The Chern classes and Kodaira dimension of a minimal variety”, In: Proc. Sympos. Alg. Geom., Sendai 1985, Adv. Stud. Pure Math, Vol. 10, Kynokuniya, Tokyo, 1985, pp. 449–476.

[20] S. Mori: “Classification of higher-dimensional varieties”, In: Algebraic geometry, Bowdoin 1985 (Brunswick/Maine 1985), Proc. Symp. Pure Math., Vol. 46(1), Amer. Math. Soc., Providence, RI, 1987, pp. 269–331.

[21] Y. Namikawa: “On deformations of Calabi-Yau 3-folds with terminal singularities”, Topology, Vol. 33(3), (1994), pp. 429–446. http://dx.doi.org/10.1016/0040-9383(94)90021-3

[22] J.H.M. Steenbrink: Mixed Hodge Structure on the Vanishing Cohomology, Real and Complex Singularities, Nordic Summer School, Oslo, 1976, pp. 525–563.

[23] K. Ueno: Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lectures Notes in Math., Vol. 439, Springer Verlag, 1975. | Zbl 0299.14007

[24] E. Viehweg: “Die Additivität der Kodaira Dimension für projektive Faserräume über Varietäten des allgemeinen Typs”, J. Reine Angew. Math., Vol. 330, (1982), pp. 132–142. | Zbl 0466.14009

[25] E. Viehweg and K. Zuo: “On the isotriviality of families of projective manifolds over curves Complex Spaces”, J. Alg. Geom., Vol. 10, (2001), pp. 781–799. | Zbl 1079.14503