A numerically efficient approach to the modelling of double-Qdot channels
A. Shamloo ; A.P. Sowa
Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 2 (2013), p. 145-156 / Harvested from The Polish Digital Mathematics Library

We consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab initio simulation. To this end we propose a novel Hamiltonian that captures the dynamics of a bi-partite quantum system, wherein the interaction is described via a Wiener-Hopf type operator. We subsequently describe the density of states function and derive the electronic properties of the underlying system. The analysis seems to capture a plethora of electronic profiles, and reveals the versatility of the proposed framework for double-Qdot channel modelling.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:266806
@article{bwmeta1.element.doi-10_2478_nsmmt-2013-0009,
     author = {A. Shamloo and A.P. Sowa},
     title = {A numerically efficient approach to the modelling of double-Qdot channels},
     journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
     volume = {2},
     year = {2013},
     pages = {145-156},
     zbl = {1273.81095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2013-0009}
}
A. Shamloo; A.P. Sowa. A numerically efficient approach to the modelling of double-Qdot channels. Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 2 (2013) pp. 145-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2013-0009/

[1] B. Booss and D.D. Bleecker, Topology and Analysis. Springer, New York, (1985). | Zbl 0551.58031

[2] A. Bottcher and S.M. Grudsky, Spectral Properties of Banded Toeplitz Matrices. SIAM, (2005). | Zbl 1089.47001

[3] H. Buch, S. Mahapatara, R. Rahman, A. Morello, and M. Y. Simmons, Spin readout and addressability of phosphorusdonor cluster in silicon. Nature communications, (2013).

[4] S. Datta, Lessons from Nanoelectronics. World Scientific, Singapore, (2012). | Zbl 1252.78001

[5] D. P. Divencenzo, Double quantum dot as a quantum bit. Science, 309, 2173, (2005).

[6] U. Harbola, M. Esposito, and S. Mukamel, Quantum master equation for electron transport through quantum dots and single molecules. Phys. Rev B, 74, 235309, (2006).

[7] E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassical radiation theories with applications to the beam maser. Proc. IEEE, 59(89), (1963).

[8] T. Junno, S. B. Carlsson, H. Q. Xu, L. Samuelson, and A. O. Orlov, Single-electron tunneling effects in a metallic double dot device. Applied Physics Letter, 80(4), 667–669, (2002).

[9] K. Klantar-Zadeh and B. Fry, Nanotechnology-Enabled Sensors. Springer, New York, USA, (2008).

[10] J.B Lawrie and I.D. Abrahams, A brief historical perspective of the wiener-hopf technique. Engrg. Math, 59(4), 351–358, (2007). | Zbl 1134.35002

[11] T. J. Levy and E. Rabani, steady state conductance in a double quantum dot array: The nonequilibrium equation of motion green’s function approach. The Journal of Chemical Physics, 138, 164125, (2013).

[12] E. Lipparini, Modern many-particle physics. World Scientific, Singapore, (2003).

[13] J-L. Liu, Mathematical modeling of semiconductor quantum dots based on the nonparabolic effective-mass approximation. Nanoscale Systems MMTA, 1(1), 58, (2012). | Zbl 1273.65162

[14] M. Paulsson, F. Zahid, and S. Datta, Electrical conduction through molecules. Advanced Semiconductors and Organic Nano-Techniques, (2003).

[15] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, and M. D. Lukin et al., Coherent manipolation of coupled electron spin in semiconductor quantum dots. Science, 309, 2180, (2005).

[16] G. Shinkai, T. Hayashi, T. Ota, and T. Fujisawa, Correlatd coherent oscillation in couple semiconductor charge qubit. Superlattices and Micristructures, 28(4), (2000).

[17] B. W. Shore and P. L. Knight, The Jaynes-Cummings model. J. Mod. Opt., 40, 1195, (1993). | Zbl 0942.81636

[18] D. Sztenkiel and R.Swirkowicz, Electron transport through quantum dot system with inter-dot coulomb interaction. Acta Physica Polonica A, 111(3), 361–372, (2007).

[19] L.N. Trefethen and M. Embree, Spectra and Pseudospectra. Princeton Univrsity Press, Princeton, New Jersey, (2005).

[20] A.M. Zagoskin, Quantum Engineering. Cambridge University Press, (2011).