Signals generated in memristive circuits
Artur Sowa
Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 1 (2012), p. 48-57 / Harvested from The Polish Digital Mathematics Library

Signals generated in circuits that include nano-structured elements typically have strongly distinct characteristics, particularly the hysteretic distortion. This is due to memristance, which is one of the key electronic properties of nanostructured materials. In this article, we consider signals generated from a memrsitive circuit model. We demonstrate numerically that such signals can be efficiently represented in certain custom-designed nonorthogonal bases. The proposed method ensures that the actual numerical representation can be implemented as a fast, O(N logN), algorithm. In addition, we discuss the possibility of modelling the hysteretic distortion via fast numerical transforms.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:266711
@article{bwmeta1.element.doi-10_2478_nsmmt-2012-0004,
     author = {Artur Sowa},
     title = {Signals generated in memristive circuits},
     journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
     volume = {1},
     year = {2012},
     pages = {48-57},
     zbl = {1273.42037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2012-0004}
}
Artur Sowa. Signals generated in memristive circuits. Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 1 (2012) pp. 48-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2012-0004/

F. Alibart, L. Gao, B.D. Hoskins, D. B. Strukov. High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 23, 075201 (7pp) (2012). [PubMed][Crossref][WoS]

A. Beurling. The Collected Works of Arno Beurling, Vol. 2: Harmonic Analysis, Contemp. Math., Birkhäuser, Boston, 378–380 (1989).

K. Chandrasekharan. Arithmetical Functions, Springer-Verlag, New York, Heidelberg, Berlin (1970). | Zbl 0217.31602

L.O. Chua. Memristor - the missing circuit element. IEEE Trans. Circuit Theory, 18, 507–519 (1971).

L. O. Chua and S. M. Kang. Memristive Devices and Systems. Proceedings of the IEEE, 64, 209-223 (1976). [Crossref]

G.Z. Cohen, Y.V. Pershin, and M. Di Ventura. Second and higher harmonics generation with memristive circuits. Appl. Phys. Let. 100, 133109 (2012).

S. Datta. Nanoscale device modeling: the Green’s function method. Superlattices and Microstructures, 28, 253–278 (2000). [Crossref]

B. Dziurla, R. Newcomb. The Drazin inverse and semi-state equations. In: P. Dewilde (ed.). Proceedings of the International Symposium on Mathematical Theory of Networks and Systems. Delft, Netherlands, pp. 283–289 (1979). | Zbl 0499.94035

H. Hedenmalm, P. Lindqvist, and K. Seip. A Hilbert Space of Dirichlet Series and Systems of Dialated Functions in L2(0; 1). Duke Math. J., 86, 1–37 (1997). [Crossref] | Zbl 0887.46008

M. Itoh, L.O. Chua. Memristor oscillators. International Journal of Bifurcation and Chaos, 18, 3183–3206 (2008). [Crossref][WoS] | Zbl 1165.94300

T.H. Kim, E.Y. Jang, N.J. Lee, D.J. Choi, K.-J. Lee, J.T. Jang, et. al. Nanoparticle Assemblies as Memristors. Nano Lett., 9, 2229–2233 (2009). [WoS]

F. Maucher, S. Skupin and W. Krolikowski. Collapse in the nonlocal nonlinear Schrödinger equation. Nonlinearity, 24, 1987–2001 (2011). [Crossref][WoS] | Zbl 1219.35285

R.V.N. Melnik, B. Lassen, L.C. Lew Yan Voon, M. Willatzen, C. Galeriu. Acccounting for Nonlinearities in Mathematical Modelling of Quantum Dot Structures. Discrete and Contin. Dyn. Syst., suppl., 642–651 (2005). | Zbl 1156.35452

M. Miranda. The Threat of Semiconductor Variability. IEEE Spectrum, July 2012

R.W. Newcomb. The semistate description of nonlinear time-variable circuits. IEEE Transactions on Circuits and Systems, 28, 62–71 (1981). [Crossref]

M. Paulsson, F. Zahid, S. Datta. Resistance of a molecule. In: W.A. Goddart III et al. (editors), Handbook of Nanoscience, Engineering, and Technology, CRC Press (2003).

T. Prodromakis and C. Toumazou. A Review on Memristive Devices and Applications. IEEE Conference Proceedings: Electronics, Circuits and Systems (ICECS), 2010 17th International Conference on, 12-15 Dec 2010, 934–937.

R. Riaza and C. Tischendorf. Semistate models of electrical circuits including memristors. Int. J. of Circ. Theor. Appl., 39, 607–627 (2011). [Crossref] | Zbl 1319.94117

R. Riaza and C. Tischendorf. Structural characterization of classical and memristive circuits with purely imaginary eigenvalues. Int. J. of Circ. Theor. Appl., (2011). Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/cta.798 [Crossref]

D. Shoenberg. Magnetic Oscillations in Metals, Cambridge University Press, Cambridge (1984), (new edition 2009)

G. Snider, R. Amerson, D. Carter, H. Abdalla, and M. Sh. Qureshi. From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain. Computer (Published by the IEEE Computer Society), 44 (2), 21–28 (2011). [Crossref]

A. Sowa. Spectra of nonlocally bound quantum systems. Russ. J. Math. Phys., 18, 227–241, (2011). | Zbl 1254.81038

A. Sowa. On an eigenvalue problem with a reciprocal–linear term. Waves in Random and Complex Media, 22, 186–206 (2012). | Zbl 1291.34141

A. Sowa. A fast-transform basis with hysteretic features. IEEE Conference Proceedings: Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference on, 8-11 May 2011, 253-257.

A. Sowa. Factorizing matrices by Dirichlet multiplication. Lin. Alg. Appl., to appear | Zbl 1263.15013

A. Sowa. The Dirichlet ring and unconditional bases in L2[0; 2Π]. (submitted) [WoS]

A. Sowa. Magnetic Oscillations and Maxwell Theory. Phys. Lett. A, 228, 347–350 (1997). [Crossref] | Zbl 1011.78003

J.C. Sprott. Elegant Chaos. World Scientific Publishing Co, London (2010). | Zbl 1222.37005

D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams. The missing memristor found. Nature Letters, 453, 80–83 (2008).